An RBF-FD closest point method for solving PDEs on surfaces

Abstract Partial differential equations (PDEs) on surfaces appear in many applications throughout the natural and applied sciences. The classical closest point method (Ruuth and Merriman (2008) [17] ) is an embedding method for solving PDEs on surfaces using standard finite difference schemes. In this paper, we formulate an explicit closest point method using finite difference schemes derived from radial basis functions (RBF-FD). Unlike the orthogonal gradients method (Piret (2012) [22] ), our proposed method uses RBF centers on regular grid nodes. This formulation not only reduces the computational cost but also avoids the ill-conditioning from point clustering on the surface and is more natural to couple with a grid based manifold evolution algorithm (Leung and Zhao (2009) [26] ). When compared to the standard finite difference discretization of the closest point method, the proposed method requires a smaller computational domain surrounding the surface, resulting in a decrease in the number of sampling points on the surface. In addition, higher-order schemes can easily be constructed by increasing the number of points in the RBF-FD stencil. Applications to a variety of examples are provided to illustrate the numerical convergence of the method.

[1]  Stephen K. Scott,et al.  Autocatalytic reactions in the isothermal, continuous stirred tank reactor: Isolas and other forms of multistability , 1983 .

[2]  M. Urner Scattered Data Approximation , 2016 .

[3]  Rui Peng,et al.  On pattern formation in the Gray-Scott model , 2007 .

[4]  Guillermo Sapiro,et al.  Variational Problems and Partial Differential Equations on Implicit Surfaces: Bye Bye Triangulated Surfaces? , 2003 .

[5]  C. M. Elliott,et al.  Surface Finite Elements for Parabolic Equations , 2007 .

[6]  Colin B. Macdonald,et al.  The Implicit Closest Point Method for the Numerical Solution of Partial Differential Equations on Surfaces , 2009, SIAM J. Sci. Comput..

[7]  Gregory E. Fasshauer,et al.  Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.

[8]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[9]  Jens Schneider,et al.  Real‐Time Fluid Effects on Surfaces using the Closest Point Method , 2012, Comput. Graph. Forum.

[10]  Steven J. Ruuth,et al.  PDEs on moving surfaces via the closest point method and a modified grid based particle method , 2016, J. Comput. Phys..

[11]  張育晟,et al.  Navier-Stokes 方程组弱解的存在性 , 2011 .

[12]  Y. Tsai Rapid and accurate computation of the distance function using grids , 2002 .

[13]  Marc Levoy,et al.  Zippered polygon meshes from range images , 1994, SIGGRAPH.

[14]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[15]  Colin B. Macdonald,et al.  Segmentation on surfaces with the Closest Point Method , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[16]  Steven J. Ruuth,et al.  A localized meshless method for diffusion on folded surfaces , 2015, J. Comput. Phys..

[17]  Colin B. Macdonald,et al.  Solving eigenvalue problems on curved surfaces using the Closest Point Method , 2011, J. Comput. Phys..

[18]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[19]  Bengt Fornberg,et al.  On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy , 2016, J. Comput. Phys..

[20]  Bengt Fornberg,et al.  Stable calculation of Gaussian-based RBF-FD stencils , 2013, Comput. Math. Appl..

[21]  Lok Ming Lui,et al.  Solving PDEs on Manifolds with Global Conformal Parametriazation , 2005, VLSM.

[22]  John B. Greer,et al.  An Improvement of a Recent Eulerian Method for Solving PDEs on General Geometries , 2006, J. Sci. Comput..

[23]  B MacdonaldColin,et al.  Level Set Equations on Surfaces via the Closest Point Method , 2008 .

[24]  Natasha Flyer,et al.  A radial basis function method for the shallow water equations on a sphere , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[25]  Stephen K. Scott,et al.  Autocatalytic reactions in the isothermal, continuous stirred tank reactor: Oscillations and instabilities in the system A + 2B → 3B; B → C , 1984 .

[26]  Grady B. Wright,et al.  A High-Order Kernel Method for Diffusion and Reaction-Diffusion Equations on Surfaces , 2012, Journal of Scientific Computing.

[27]  Leevan Ling,et al.  A Kernel-Based Embedding Method and Convergence Analysis for Surfaces PDEs , 2018, SIAM J. Sci. Comput..

[28]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[29]  Steven J. Ruuth,et al.  A simple embedding method for solving partial differential equations on surfaces , 2008, J. Comput. Phys..

[30]  Robert Michael Kirby,et al.  A Radial Basis Function (RBF)-Finite Difference (FD) Method for Diffusion and Reaction–Diffusion Equations on Surfaces , 2014, Journal of Scientific Computing.

[31]  J A Sherratt,et al.  Spatially varying equilibria of mechanical models: application to dermal wound contraction. , 1998, Mathematical biosciences.

[32]  Bengt Fornberg,et al.  Solving PDEs with radial basis functions * , 2015, Acta Numerica.

[33]  Neil A. Dodgson,et al.  Advances in Multiresolution for Geometric Modelling , 2005 .

[34]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[35]  R. Tsai,et al.  Integration over curves and surfaces defined by the closest point mapping , 2015, 1504.05478.

[36]  Li-Tien Cheng,et al.  Variational Problems and Partial Differential Equations on Implicit Surfaces: The Framework and Exam , 2000 .

[37]  Greg Turk,et al.  Generating textures on arbitrary surfaces using reaction-diffusion , 1991, SIGGRAPH.

[38]  Colin B. Macdonald,et al.  Level Set Equations on Surfaces via the Closest Point Method , 2008, J. Sci. Comput..

[39]  Jeff McGough,et al.  Pattern formation in the Gray-Scott model , 2004 .

[40]  Hongkai Zhao,et al.  A grid based particle method for moving interface problems , 2009, J. Comput. Phys..

[41]  Bengt Fornberg,et al.  A primer on radial basis functions with applications to the geosciences , 2015, CBMS-NSF regional conference series in applied mathematics.

[42]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[43]  Steven J. Ruuth,et al.  Diffusion generated motion of curves on surfaces , 2007, J. Comput. Phys..

[44]  Colin B. Macdonald,et al.  A volume-based method for denoising on curved surfaces , 2013, 2013 IEEE International Conference on Image Processing.

[45]  R. Tsai,et al.  Volumetric variational principles for a class of partial differential equations defined on surfaces and curves , 2017, Research in the Mathematical Sciences.

[46]  Guillermo Sapiro,et al.  Navier-stokes, fluid dynamics, and image and video inpainting , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[47]  Cécile Piret,et al.  The orthogonal gradients method: A radial basis functions method for solving partial differential equations on arbitrary surfaces , 2012, J. Comput. Phys..

[48]  Colin B. Macdonald,et al.  Calculus on Surfaces with General Closest Point Functions , 2012, SIAM J. Numer. Anal..

[49]  Elisabeth Larsson,et al.  Stable Computations with Gaussian Radial Basis Functions , 2011, SIAM J. Sci. Comput..

[50]  Robert Schaback,et al.  Optimal Stencils in Sobolev Spaces , 2016, 1611.04750.