TOR-Mediated Cell-Cycle Activation Causes Neurodegeneration in a Drosophila Tauopathy Model

[1]  Farid Ahmed,et al.  Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[2]  P. Hof,et al.  Cell-Cycle Reentry and Cell Death in Transgenic Mice Expressing Nonmutant Human Tau Isoforms , 2005, The Journal of Neuroscience.

[3]  R. Ravid,et al.  Activation of Akt/PKB, increased phosphorylation of Akt substrates and loss and altered distribution of Akt and PTEN are features of Alzheimer's disease pathology , 2005, Journal of neurochemistry.

[4]  Hyoung-Gon Lee,et al.  Mitogen‐ and stress‐activated protein kinase 1: Convergence of the ERK and p38 pathways in Alzheimer's disease , 2005, Journal of neuroscience research.

[5]  Gloria Lee Tau and src family tyrosine kinases. , 2005, Biochimica et biophysica acta.

[6]  B. Winblad,et al.  Phosphorylated eukaryotic translation factor 4E is elevated in Alzheimer brain , 2004, Neuroreport.

[7]  M. Feany,et al.  Comparison of pathways controlling toxicity in the eye and brain in Drosophila models of human neurodegenerative diseases. , 2004, Human molecular genetics.

[8]  T. P. Neufeld,et al.  Role and regulation of starvation-induced autophagy in the Drosophila fat body. , 2004, Developmental cell.

[9]  S. Benzer,et al.  Regulation of Lifespan in Drosophila by Modulation of Genes in the TOR Signaling Pathway , 2004, Current Biology.

[10]  M. Bjornsti,et al.  The tor pathway: a target for cancer therapy , 2004, Nature Reviews Cancer.

[11]  B. Lu,et al.  PAR-1 Kinase Plays an Initiator Role in a Temporally Ordered Phosphorylation Process that Confers Tau Toxicity in Drosophila , 2004, Cell.

[12]  T. Gardner,et al.  Insulin Promotes Rat Retinal Neuronal Cell Survival in a p70S6K-dependent Manner* , 2004, Journal of Biological Chemistry.

[13]  Roland N. Emokpae,et al.  Cell Cycle Activation Linked to Neuronal Cell Death Initiated by DNA Damage , 2004, Neuron.

[14]  Esther B. E. Becker,et al.  Cell cycle regulation of neuronal apoptosis in development and disease , 2004, Progress in Neurobiology.

[15]  Susan Lindquist,et al.  Yeast Genes That Enhance the Toxicity of a Mutant Huntingtin Fragment or α-Synuclein , 2003, Science.

[16]  J. Shulman,et al.  Genetic modifiers of tauopathy in Drosophila. , 2003, Genetics.

[17]  David S. Park,et al.  Cyclin-dependent kinase 5 is a mediator of dopaminergic neuron loss in a mouse model of Parkinson's disease , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Clemens R Scherzer,et al.  Gene expression changes presage neurodegeneration in a Drosophila model of Parkinson's disease. , 2003, Human molecular genetics.

[19]  F. Tamanoi,et al.  Drosophila Rheb GTPase is required for cell cycle progression and cell growth , 2003, Journal of Cell Science.

[20]  H. Braak,et al.  Up-regulation of phosphorylated/activated p70 S6 kinase and its relationship to neurofibrillary pathology in Alzheimer's disease. , 2003, The American journal of pathology.

[21]  George Perry,et al.  Increased p27, an essential component of cell cycle control, in Alzheimer's disease , 2003, Aging cell.

[22]  S. Ackerman,et al.  Oxidative stress, cell cycle, and neurodegeneration. , 2003, The Journal of clinical investigation.

[23]  G. Perry,et al.  Ectopic localization of phosphorylated histone H3 in Alzheimer's disease: a mitotic catastrophe? , 2003, Acta Neuropathologica.

[24]  P. Hanawalt,et al.  When parsimony backfires: neglecting DNA repair may doom neurons in Alzheimer's disease. , 2003, BioEssays : news and reviews in molecular, cellular and developmental biology.

[25]  E. Hafen,et al.  Insulin/IGF and target of rapamycin signaling: a TOR de force in growth control. , 2003, Trends in cell biology.

[26]  Paul Greengard,et al.  Pharmacological inhibitors of cyclin-dependent kinases. , 2002, Trends in pharmacological sciences.

[27]  T. P. Neufeld,et al.  Inhibition of cellular growth and proliferation by dTOR overexpression in Drosophila , 2002, Genesis.

[28]  Tian Xu,et al.  Akt regulates growth by directly phosphorylating Tsc2 , 2002, Nature Cell Biology.

[29]  D. Geschwind,et al.  Human Wild-Type Tau Interacts with wingless Pathway Components and Produces Neurofibrillary Pathology in Drosophila , 2002, Neuron.

[30]  Maria K. Lehtinen,et al.  Cdc2 phosphorylation of BAD links the cell cycle to the cell death machinery. , 2002, Molecular cell.

[31]  M. Mattson,et al.  Modification of brain aging and neurodegenerative disorders by genes, diet, and behavior. , 2002, Physiological reviews.

[32]  L. Greene,et al.  Regulation of Neuronal Survival and Death by E2F-Dependent Gene Repression and Derepression , 2001, Neuron.

[33]  Benjamin H. White,et al.  A conditional tissue-specific transgene expression system using inducible GAL4 , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[34]  I. Ferrer,et al.  Phosphorylated c‐MYC expression in Alzheimer disease, Pick's disease, progressive supranuclear palsy and corticobasal degeneration , 2001, Neuropathology and applied neurobiology.

[35]  Joshua M. Shulman,et al.  Tauopathy in Drosophila: Neurodegeneration Without Neurofibrillary Tangles , 2001, Science.

[36]  K. Herrup,et al.  DNA Replication Precedes Neuronal Cell Death in Alzheimer's Disease , 2001, The Journal of Neuroscience.

[37]  W. Chia,et al.  cdc2 links the Drosophila cell cycle and asymmetric division machineries , 2001, Nature.

[38]  M. Memo,et al.  Activation of cell-cycle-associated proteins in neuronal death: a mandatory or dispensable path? , 2001, Trends in Neurosciences.

[39]  I. Vincent,et al.  Mitotic activation: a convergent mechanism for a cohort of neurodegenerative diseases , 2000, Neurobiology of Aging.

[40]  J. Ikeda,et al.  Cyclin-dependent kinases as a therapeutic target for stroke. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[41]  W. Bender,et al.  A Drosophila model of Parkinson's disease , 2000, Nature.

[42]  David S. Park,et al.  Role of Cell Cycle Regulatory Proteins in Cerebellar Granule Neuron Apoptosis , 1999, The Journal of Neuroscience.

[43]  E. Hafen,et al.  Drosophila S6 kinase: a regulator of cell size. , 1999, Science.

[44]  Ronald C. Petersen,et al.  Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17 , 1998, Nature.

[45]  Nancy M Bonini,et al.  Expanded Polyglutamine Protein Forms Nuclear Inclusions and Causes Neural Degeneration in Drosophila , 1998, Cell.

[46]  K. Herrup,et al.  Ectopic Cell Cycle Proteins Predict the Sites of Neuronal Cell Death in Alzheimer’s Disease Brain , 1998, The Journal of Neuroscience.

[47]  J. Tavaré,et al.  Activation of mitogen-activated protein kinase and p70S6 kinase is not correlated with cerebellar granule cell survival. , 1997, The Biochemical journal.

[48]  M. Billingsley,et al.  Regulated phosphorylation and dephosphorylation of tau protein: effects on microtubule interaction, intracellular trafficking and neurodegeneration. , 1997, The Biochemical journal.

[49]  I. Hariharan,et al.  A Cyclin-Dependent Kinase Inhibitor, Dacapo, Is Necessary for Timely Exit from the Cell Cycle during Drosophila Embryogenesis , 1996, Cell.

[50]  H. Orr,et al.  In Vivo Viability of Postmitotic Purkinje Neurons Requires pRb Family Member Function , 1995, Molecular and Cellular Neuroscience.

[51]  G. Thomas,et al.  The mTOR/S6K signalling pathway: the role of the TSC1/2 tumour suppressor complex and the proto-oncogene Rheb. , 2004, Novartis Foundation symposium.

[52]  S. Lindquist,et al.  Yeast genes that enhance the toxicity of a mutant huntingtin fragment or alpha-synuclein. , 2003, Science.

[53]  J. Trojanowski,et al.  Neurodegenerative tauopathies. , 2001, Annual review of neuroscience.