Preventing bursting in adaptive control using an introspective neural network algorithm

Abstract This paper presents a solution to the problem of weight drift, and associated bursting phenomenon, found in direct adaptive control. Bursting is especially likely to occur when systems are nonminimum phase or open-loop unstable. Standard methods in the literature, including leakage, e-modification, dead-zone, and weight projection, all trade off performance to prevent bursting. The solution presented here uses a novel introspective algorithm operating within a Cerebellar Model Arithmetic Computer (CMAC) neural network framework. The introspective algorithm determines an estimate of the derivative of error with respect to each weight in the CMAC. The local nature of the CMAC cell domains enables this technique, since this derivative can be calculated at the moment a cell is deactivated – based on the error within the cell׳s domain. If the derivative looks significant, the resulting weight change (due to a Lyapunov-stable adaptive update law) remains in the cell׳s memory. An insignificant derivative results in the weight change being discarded before the cell׳s next activation. The algorithm can prevent bursting without sacrificing performance, verified through an experiment with a (nonminimum phase) flexible-joint robot and a simulation of an (open-loop unstable) quadrotor helicopter.

[1]  Frank L. Lewis,et al.  Optimal design of CMAC neural-network controller for robot manipulators , 2000, IEEE Trans. Syst. Man Cybern. Part C.

[2]  Igor Škrjanc,et al.  Adaptive law with a new leakage term , 2010 .

[3]  James S. Albus,et al.  Brains, behavior, and robotics , 1981 .

[4]  Indra Narayan Kar,et al.  Adaptive Control Of Robot Manipulators Using CNN Under Actuator Constraints , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[5]  W. Chatlatanagulchai,et al.  Backstepping high-order differential neural network control of flexible-joint manipulator , 2005, Proceedings of the 2005, American Control Conference, 2005..

[6]  Csaba Szepesvári,et al.  Performance of Nonlinear Approximate Adaptive Controllers , 2003 .

[7]  Frank L. Lewis,et al.  Design and implementation of industrial neural network controller using backstepping , 2003, IEEE Trans. Ind. Electron..

[8]  David B. Leake,et al.  Learning to Refine Indexing by Introspective Reasoning , 1995, ICCBR.

[9]  Michael T. Cox Metacognition in computation: A selected research review , 2005, Artif. Intell..

[10]  Anthony J. Calise,et al.  Several Extensions in Methods for Adaptive Output Feedback Control , 2004, IEEE Transactions on Neural Networks.

[11]  T. CoxMichael Metacognition in computation , 2005 .

[12]  Keun-Mo Koo,et al.  Stable adaptive fuzzy controller with time-varying dead-zone , 2001, Fuzzy Sets Syst..

[13]  Fu-Chuang Chen,et al.  Practical stability issues in CMAC neural network control systems , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[14]  Chris J. B. Macnab,et al.  Neural-adaptive control using alternate weights , 2011, Neural Computing and Applications.

[15]  Frank L. Lewis,et al.  Control of unknown nonlinear dynamical systems using CMAC neural networks: structure, stability, and passivity , 1995, Proceedings of Tenth International Symposium on Intelligent Control.

[16]  K. Narendra,et al.  A New Adaptive Law for Robust Adaptation without Persistent Excitation , 1986, 1986 American Control Conference.

[17]  Stanislaw H. Zak,et al.  Uniformly ultimately bounded fuzzy adaptive tracking controllers for uncertain systems , 2004, IEEE Transactions on Fuzzy Systems.

[18]  Chris J. B. Macnab,et al.  An Introspective Learning Algorithm that Achieves Robust Adaptive Control of a Quadrotor Helicopter , 2012, Infotech@Aerospace.

[19]  Chris J. B. Macnab A New robust Weight Update for Multilayer-Perceptron Adaptive Control , 2007, Control. Intell. Syst..

[20]  Jun Nakanishi,et al.  Feedback error learning and nonlinear adaptive control , 2004, Neural Networks.

[21]  Frank L. Lewis,et al.  Robust backstepping control of nonlinear systems using neural networks , 2000, IEEE Trans. Syst. Man Cybern. Part A.

[22]  Chris J. B. Macnab,et al.  Discrete-time weight updates in neural-adaptive control , 2013, Soft Comput..

[23]  James S. Albus,et al.  Data Storage in the Cerebellar Model Articulation Controller (CMAC) , 1975 .

[24]  Chris J. B. Macnab,et al.  Robust adaptive control of a quadrotor helicopter , 2011 .

[25]  Frank L. Lewis,et al.  CMAC neural network control of robot manipulators , 1997 .

[26]  L. G. Kraft,et al.  Real-time vibration control using CMAC neural networks with weight smoothing , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[27]  Chris J. B. Macnab Preventing bursting in approximate-adaptive control when using local basis functions , 2009, Fuzzy Sets Syst..

[28]  Qiang Yang,et al.  Feature Weight Maintenance in Case Bases Using Introspective Learning , 2001, Journal of Intelligent Information Systems.

[29]  Bo Egardt,et al.  Stability of Adaptive Controllers , 1979 .

[30]  James S. Albus,et al.  New Approach to Manipulator Control: The Cerebellar Model Articulation Controller (CMAC)1 , 1975 .

[31]  Tsu-Tian Lee,et al.  Direct-adaptive neurocontrol of robots with unknown nonlinearities and velocity feedback , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[32]  Robert M. Sanner,et al.  Gaussian Networks for Direct Adaptive Control , 1991, 1991 American Control Conference.

[33]  S. Bortoff,et al.  Adaptive feedback linearization using multivariable spline functions , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[34]  Eric Rogers,et al.  Uncertainty, performance, and model dependency in approximate adaptive nonlinear control , 2000, IEEE Trans. Autom. Control..

[35]  Frank L. Lewis,et al.  CMAC neural networks for control of nonlinear dynamical systems: Structure, stability and passivity , 1997, Autom..

[36]  Mark W. Spong,et al.  Robot dynamics and control , 1989 .

[37]  Abraham K. Ishihara,et al.  Control of robots using radial basis function neural networks with dead-zone , 2011 .