Full convergence of the steepest descent method with inexact line searches

Several finite procedures for determining the step size of the steepest descent method for unconstrained optimization, without performing exact one-dimensional minimizations, have been considered in the literature. The convergence analysis of these methods requires that the objective function have bounded level sets and that its gradient satisfy a Lipschitz condition, in order to establish just stationarity of all cluster points. We consider two of such procedures and prove, for a convex objective, convergence of the whole sequence to a minimizer without any level set boundedness assumption and, for one of them, without any Lipschitz condition.