Σ * Fine Structure

Fine Structure is the name given to an analysis developed by Ronald Jensen in the late 60’s and early 70’s of Godel’s universe L of constructible sets with which Godel showed the consistency of the Axiom of Choice and Continuum Hypothesis with the usual axioms of set theory. As the name implies, the ramified nature of L that Godel used, is given a microscopic treatment of how sets are constructed. Jensen sought to replace the Godel levels L α with levels J α which are closed under certain rudimentary set functions and so are more useful for this purpose. This analysis turned out to be extremely fruitful and resulted in a wealth of information about the ordinal combinatorial structure of L, but moreover gave insight into a wealth of absolute facts about V the universe of all sets of mathematical discourse.

[1]  Charles G. Morgan Higher Gap Morasses, IA: Gap-Two Morasses and Condensation , 1998, J. Symb. Log..

[2]  James Cummings,et al.  Squares, scales and stationary Reflection , 2001, J. Math. Log..

[3]  Dorshka Wylie Condensation and square in a higher core model , 1989 .

[4]  Joseph R. Schoenfield Recursion theory , 1993 .

[5]  Philip D. Welch,et al.  On elementary embeddings from an inner model to the universe , 2001, Journal of Symbolic Logic.

[6]  R. Jensen,et al.  The fine structure of the constructible hierarchy , 1972 .

[7]  S. Friedman,et al.  Fine Structure and Class Forcing , 2000 .

[8]  William J. Mitchell,et al.  The Covering Lemma up to a Woodin Cardinal , 1997, Ann. Pure Appl. Log..

[9]  Ami Litman,et al.  A Strengthening of Jensen's Principles , 1980, J. Symb. Log..

[10]  Ernest Schimmerling,et al.  THE MAXIMALITY OF THE CORE MODEL , 1997 .

[11]  John R. Steel PFA implies ADL(ℝ) , 2005, J. Symb. Log..

[12]  Ernest Schimmerling,et al.  Square in core models , 2001, Bull. Symb. Log..

[13]  Ernest Schimmerling A Core Model Toolbox and Guide , 2010 .

[14]  John Gregory,et al.  Higher Souslin trees and the generalized continuum hypothesis , 1976, Journal of Symbolic Logic.

[15]  Matthew Foreman,et al.  A very weak square principle , 1997, Journal of Symbolic Logic.

[16]  Philip D. Welch,et al.  On the Strength of Mutual Stationarity , 2006 .

[17]  John R. Steel,et al.  An Outline of Inner Model Theory , 2010 .

[18]  Martin Zeman Inner Models and Large Cardinals , 2001 .

[19]  William J. Mitchell The core model for sequences of measures. I , 1984 .

[20]  Douglas Burke,et al.  Generic embeddings and the failure of box , 1995 .

[21]  R. Jensen,et al.  The Core Model , 1982, An Introduction to Geographical and Urban Economics.

[22]  James Cummings,et al.  Canonical structure in the universe of set theory: part one , 2004, Ann. Pure Appl. Log..

[23]  Ronald B. Jensen,et al.  Smooth Categories and Global square , 2000, Ann. Pure Appl. Log..

[24]  Philip D. Welch,et al.  Determinacy in the Difference Hierarchy of Co-Analytic Sets , 1996, Ann. Pure Appl. Log..

[25]  Joseph R. Rebholz Some consequences of the Morass and diamond , 1975 .

[26]  A. R. D. Mathias Surveys in set theory , 1983 .

[27]  Sy-David Friedman,et al.  Hyperfine structure theory and gap 1 morasses , 2006, Journal of Symbolic Logic.

[28]  Akihiro Kanamori,et al.  Strong axioms of infinity and elementary embeddings , 1978 .

[29]  A. Dodd The Core Model: INDEX OF DEFINITIONS , 1982 .

[30]  Menachem Magidor,et al.  The weak □* is really weaker than the full □ , 1986, Journal of Symbolic Logic.

[31]  Philip D. Welch,et al.  On successors of Jónsson cardinals , 2000, Arch. Math. Log..

[32]  Dan Velleman Simplified Gap-2 morasses , 1987, Ann. Pure Appl. Log..

[33]  Tetsuya Ishiu Club guessing sequences and filters , 2005, J. Symb. Log..

[34]  Menachem Magidor Representing sets of ordinals as countable unions of sets in the core model , 1990 .

[36]  Sy-David Friedman,et al.  An elementary approach to the fine structure of L , 1997, Bull. Symb. Log..

[37]  Ronald B. Jensen,et al.  Supercomplete extenders and type 1 mice: Part I , 2004, Ann. Pure Appl. Log..

[38]  Dan Velleman Simplified Morasses with Linear Limits , 1984, J. Symb. Log..

[39]  Patrick Suppes,et al.  Axiomatic set theory , 1969 .

[40]  Ernest Schimmerling,et al.  Characterization of □κ in Core Models , 2004, J. Math. Log..

[41]  Philip D. Welch,et al.  Coding the Universe: Some further applications , 1982 .

[42]  Lee J. Stanley,et al.  Condensation-coherent global square systems , 1985 .

[43]  Ernest Schimmerling,et al.  Combinatorial Principle in the Core Model for one Woodin Cardinal , 1995, Ann. Pure Appl. Log..