Towards a unified evolutionary genetics of microorganisms.

I propose here that evolutionary genetics, apart from improving our basic knowledge of the taxonomy and evolution of microbes (either eukaryotes or prokaryotes), can also greatly contribute to applied research in microbiology. Evolutionary genetics provides convenient guidelines for better interpreting genetic and molecular data dealing with microorganisms. The three main potential applications of evolutionary genetics in microbiology are (a) epidemiological follow-up (with the necessity of evaluating the stability of microbial genotypes over space and time); (b) taxonomy in the broad sense (better definition and sharper delimitation of presently described taxa, research of hidden genetic subdivisions); and (c) evaluation of the impact of the genetic diversity of microbes on their relevant properties (pathogenicity, resistance to drugs, etc). At present, two main kinds of population structure can be distinguished in natural microbial populations: (a) species that are not subdivided into discrete phylogenetic lineages (panmictic species or basically sexual species with occasional bouts of short-term clonality fall into this category); (b) species that are strongly subdivided by either cryptic speciation or clonal evolution. Improvements in available statistical methods are required to refine these distinctions and to better quantify the actual impact of gene exchange in natural microbial populations. Moreover, a codified selection of markers with appropriate molecular clocks (in other words: adapted levels of resolution) is sorely needed to answer distinct questions that address different scales of time and space: experimental, epidemic, and evolutionary. The problems raised by natural genetic diversity are very similar for all microbial species, in terms of both basic and applied science. Despite this fact, a regrettable compartmentalization among specialists has hampered progress in this field. I propose a synthetic approach, relying on the statistical improvements and technical standardizations called for above, to settle a unified evolutionary genetics of microorganisms, valid whatever the species studied, whether eukaryotic (parasitic protozoa and fungi) or prokaryotic (bacteria). Apart from benefits for basic evolutionary research, the anticipated payoff from this synthetic approach is to render routine and common-place the use of microbial evolutionary genetics in the fields of epidemiology, medicine, and agronomy.

[1]  F. Ayala,et al.  Are eukaryotic microorganisms clonal or sexual? A population genetics vantage. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[2]  M. Tibayrenc Antigenic diversity and the transmission dynamics of Plasmodium falciparum: the clonality/sexuality debate revisited. , 1994, Parasitology today.

[3]  J. Felsenstein Numerical Methods for Inferring Evolutionary Trees , 1982, The Quarterly Review of Biology.

[4]  F J Ayala,et al.  A clonal theory of parasitic protozoa: The population structures of Entamoeba, Giardia, Leishmania, Naegleria, Plasmodium, Trichomonas, and Trypanosoma and their medical and taxonomical consequences , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[5]  J. Shaw,et al.  Isozymic heterogeneity of Trypanosoma cruzi in the first autochthonous patients with Chagas' disease in Amazonian Brazil , 1978, Nature.

[6]  R. Paru,et al.  Mating patterns in malaria parasite populations of Papua New Guinea. , 1995, Science.

[7]  R. Cibulskis Origins and organization of genetic diversity in natural populations of Trypanosoma brucei , 1988, Parasitology.

[8]  D. Hartl Population genetics of microbial organisms. , 1992, Current opinion in genetics & development.

[9]  Y. Carlier,et al.  Arguments génétiques contre l'existence d'une sexualité actuelle chez Trypanosoma Cruzi. Implications taxonomiques. , 1981 .

[10]  D. Lanar,et al.  Complexity and content of the DNA and RNA in Trypanosoma cruzi. , 1981, Molecular and biochemical parasitology (Print).

[11]  F. Ayala,et al.  The yeast Candida albicans has a clonal mode of reproduction in a population of infected human immunodeficiency virus-positive patients. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[12]  D. Dykhuizen,et al.  Recombination in Escherichia coli and the definition of biological species , 1991, Journal of bacteriology.

[13]  R. Pinner,et al.  Multilocus enzyme typing of Cryptococcus neoformans , 1993, Journal of clinical microbiology.

[14]  W. Kennedy,et al.  Hybrid formation within the genus Leishmania? , 1987, Parassitologia.

[15]  R. Milkman,et al.  Molecular evolution of the Escherichia coli chromosome. IV. Sequence comparisons. , 1993, Genetics.

[16]  Peter H. A. Sneath,et al.  Numerical Taxonomy: The Principles and Practice of Numerical Classification , 1973 .

[17]  T. Whittam,et al.  Population genetics of pathogenic bacteria. , 1987, Microbial pathogenesis.

[18]  A. Friday,et al.  Problems of phylogenetic reconstruction , 1984 .

[19]  D. Caugant,et al.  Epidemiological analysis of Candida albicans strains by multilocus enzyme electrophoresis , 1993, Journal of clinical microbiology.

[20]  D. Hartl,et al.  The population genetics of Escherichia coli. , 1984, Annual review of genetics.

[21]  M. Tibayrenc Entamoeba, giardia and toxoplasma: clones or cryptic species? , 1993, Parasitology Today.

[22]  E. Mayr Speciation Phenomena in Birds , 1940, The American Naturalist.

[23]  R. Cibulskis Genetic variation in Trypanosoma brucei and the epidemiology of sleeping sickness in the Lambwe Valley, Kenya , 1992, Parasitology.

[24]  Masatoshi Nei,et al.  Genetic Distance between Populations , 1972, The American Naturalist.

[25]  M. D. Rumbaugh,et al.  Genetic structure of natural populations of the nitrogen-fixing bacterium Rhizobium meliloti , 1990, Applied and environmental microbiology.

[26]  W. Timberlake,et al.  Sexual origins of British Aspergillus nidulans isolates. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[27]  T. Burkot,et al.  Genetic analysis of the human malaria parasite Plasmodium falciparum. , 1987, Science.

[28]  E. Wiley Phylogenetics: The Theory and Practice of Phylogenetic Systematics , 1981 .

[29]  M. Tibayrenc,et al.  Detection of linkage disequilibrium in Trypanosoma brucei isolated from tsetse flies and characterized by RAPD analysis and isoenzymes , 1995, Parasitology.

[30]  F. Ayala,et al.  Towards a population genetics of microorganisms: The clonal theory of parasitic protozoa. , 1991, Parasitology today.

[31]  A. Braude,et al.  Differentiation of Cryptococcus neoformans serotypes by isoenzyme electrophoresis. , 1986, American journal of clinical pathology.

[32]  J. Stringer,et al.  Molecular Genetic Distinction of Pneumocystis carinii from Rats and Humans , 1993, The Journal of eukaryotic microbiology.

[33]  M. Feldman,et al.  Population structure of multilocus associations. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[34]  D. Hartl,et al.  BIOTYPING CONFIRMS A NEARLY CLONAL POPULATION STRUCTURE IN ESCHERICHIA COLI , 1986, Evolution; international journal of organic evolution.

[35]  K. Livak,et al.  DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. , 1990, Nucleic acids research.

[36]  A. Solari,et al.  Characterization of Trypanosoma cruzi populations by several molecular markers supports a clonal mode of reproduction. , 1993, Biological research.

[37]  M. Tibayrenc,et al.  Trypanosoma brucei s.1.: evolution, linkage and the clonality debate , 1996, Parasitology.

[38]  A. Tait,et al.  Evidence for diploidy and mating in trypanosomes , 1980, Nature.

[39]  N. Mantel The detection of disease clustering and a generalized regression approach. , 1967, Cancer research.

[40]  M. Tibayrenc,et al.  Isozyme variability of Trypanosoma brucei s.l.: genetic, taxonomic, and epidemiological significance. , 1994, Experimental parasitology.

[41]  L. David Sibley,et al.  Virulent strains of Toxoplasma gondii comprise a single clonal lineage , 1992, Nature.

[42]  X. Zhou,et al.  Sexuality in a natural population of bacteria–Bacillus subtilis challenges the clonal paradigm , 1992, Molecular ecology.

[43]  M. Tibayrenc Population genetics of parasitic protozoa and other microorganisms. , 1995, Advances in parasitology.

[44]  R. Carter,et al.  The distribution of enzyme variation in populations of Plasmodium falciparum in Africa. , 1975, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[45]  W. Fitch,et al.  Construction of phylogenetic trees. , 1967, Science.

[46]  J. Charlwood,et al.  Random mating in a natural population of the malaria parasite Plasmodium falciparum , 1994, Parasitology.

[47]  I. Ørskov,et al.  Summary of a Workshop on the Clone Concept in the Epidemiology, Taxonomy, and Evolution of the Enterobacteriaceae and other Bacteria , 1983 .

[48]  M. Solignac,et al.  Interprétation génétique des zymogrammes de flagellés des genres Trypanosoma et Leishmania , 1981 .

[49]  Christopher G. Dowson,et al.  Localized sex in bacteria , 1991, Nature.

[50]  M. Tibayrenc,et al.  Genetic diversity and population structure of Trypanosoma brucei: clonality versus sexuality. , 1995, Molecular and biochemical parasitology.

[51]  R. Lenski,et al.  Hierarchical analysis of linkage disequilibrium in Rhizobium populations: evidence for sex? , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[52]  J. Sved The stability of linked systems of loci with a small population size. , 1968, Genetics.

[53]  J. M. Smith,et al.  How clonal are bacteria? , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[54]  B. Richardson,et al.  Allozyme Electrophoresis: A Handbook for Animal Systematics and Population Studies , 1988 .

[55]  F. Ayala,et al.  Genetic characterization of six parasitic protozoa: parity between random-primer DNA typing and multilocus enzyme electrophoresis. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[56]  D. Dykhuizen,et al.  Borrelia burgdorferi is clonal: implications for taxonomy and vaccine development. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[57]  B. Levin,et al.  Genetic diversity and structure in Escherichia coli populations. , 1980, Science.

[58]  J. Farris Methods for Computing Wagner Trees , 1970 .

[59]  J. T. Crawford,et al.  Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology , 1993, Journal of clinical microbiology.

[60]  J. Schweizer,et al.  Hybrid formation between African trypanosomes during cyclical transmission , 1986, Nature.

[61]  F. Ayala,et al.  ISOZYME VARIABILITY IN TRYPANOSOMA CRUZI, THE AGENT OF CHAGAS' DISEASE: GENETICAL, TAXONOMICAL, AND EPIDEMIOLOGICAL SIGNIFICANCE , 1988, Evolution; international journal of organic evolution.

[62]  M. Tibayrenc Population genetics and strain typing of microorganisms: how to detect departures from panmixia without individualizing alleles and loci. , 1995, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.

[63]  J. Welsh,et al.  Fingerprinting genomes using PCR with arbitrary primers. , 1990, Nucleic acids research.