High efficiency multi-junction thin film silicon cells incorporating nanocrystalline silicon

Abstract Significant advances have been made in the recent years to improve the efficiency of single- and multi-junction solar cells incorporating nanocrystalline silicon (nc-Si:H). The improvements have resulted from the development of high quality intrinsic material, novel doped layers, superior back reflector and appropriate device design. Stable active-area efficiency of 13.6% for small-area cells and aperture-area efficiency of 11.85% for large-area devices have been achieved. In this paper, we discuss the key activities that led to these high efficiencies with emphasis on substrate-type solar cells. Manufacturing issues and future research directions to improve efficiency further are also discussed.

[1]  M. Zeman,et al.  Modulated photonic-crystal structures as broadband back reflectors in thin-film solar cells , 2009 .

[2]  Xiaodang Zhang,et al.  Effective light trapping in thin film silicon solar cells from textured Al doped ZnO substrates with broad surface feature distributions , 2012 .

[3]  Reinhard Carius,et al.  Open circuit voltage improvement of high-deposition-rate microcrystalline silicon solar cells by hot wire interface layers , 2005 .

[4]  T. Grundler,et al.  Hydrogenated amorphous silicon oxide containing a microcrystalline silicon phase and usage as an intermediate reflector in thin-film silicon solar cells , 2011 .

[5]  M. Zeman,et al.  Advanced Light Trapping in Thin-film Silicon Solar Cells , 2010 .

[6]  Arvind Shah,et al.  Complete microcrystalline p-i-n solar cell—Crystalline or amorphous cell behavior? , 1994 .

[7]  Harry A. Atwater,et al.  Plasmonic light trapping in thin-film Si solar cells , 2012 .

[8]  P. Buehlmann,et al.  In situ silicon oxide based intermediate reflector for thin-film silicon micromorph solar cells , 2007 .

[9]  S. Fan,et al.  Nanophotonic light-trapping theory for solar cells , 2011 .

[10]  P. D. Veneri,et al.  Silicon oxide based n-doped layer for improved performance of thin film silicon solar cells , 2010 .

[11]  S. Guha,et al.  High Efficiency Hydrogenated Nanocrystalline Silicon Solar Cells Deposited at High Rates , 2010 .

[12]  S. Guha,et al.  Study of back reflectors for amorphous silicon alloy solar cell application , 1991 .

[13]  S. Guha,et al.  12.0% Efficiency on large area, encapsulated, multijunction nc-Si:H based solar cells , 2011, 2011 37th IEEE Photovoltaic Specialists Conference.

[14]  Christophe Ballif,et al.  Thin-film silicon triple-junction solar cell with 12.5% stable efficiency on innovative flat light-scattering substrate , 2012 .

[15]  Yoshiaki Kanamori,et al.  Flattened light-scattering substrate in thin film silicon solar cells for improved infrared response , 2011 .

[16]  S. Guha,et al.  Fabrication of Large Area Amorphous Silicon/Nanocrystalline Silicon Double Junction Solar Cells , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[17]  Makoto Tanaka,et al.  Progress in High Conversion Efficiency a-Si/μc-Si Tandem Solar Cells and Modules , 2012 .

[18]  High‐efficiency µc‐Si solar cells made by very high‐frequency plasma‐enhanced chemical vapor deposition , 2006 .

[19]  S. Guha,et al.  Nanostructured Silicon Oxide Dual-Function Layer in Amorphous Silicon Based Solar Cells , 2012 .

[20]  Guijun Li,et al.  Progress in Research and Mass Production of Large-Scale Tandem Thin Film Si Solar Modules at Chint Solar , 2012 .

[21]  S. Guha,et al.  Effect of impurities on performance of hydrogenated nanocrystalline silicon solar cells , 2012 .

[22]  S. Guha,et al.  Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies , 1997 .

[23]  S. M. Pietruszko,et al.  On light‐induced effect in amorphous hydrogenated silicon , 1981 .

[24]  M. Kondo,et al.  Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells , 2013 .

[25]  Don L. Williamson,et al.  Hydrogen dilution profiling for hydrogenated microcrystalline silicon solar cells , 2004 .

[26]  R. Biswas,et al.  Simulation and modelling of photonic and plasmonic crystal back reflectors for efficient light trapping , 2010 .

[27]  S. Guha,et al.  Hydrogenated Nanocrystalline Silicon based Solar Cell with 13.6% Stable Efficiency , 2012 .

[28]  S. Guha,et al.  Advances in light trapping for hydrogenated nanocrystalline silicon solar cells , 2013, 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2.

[29]  E. Yablonovitch Statistical ray optics , 1982 .

[30]  Ch. Hof,et al.  The "micromorph" solar cell: extending a-Si:H technology towards thin film crystalline silicon , 1996, Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996.

[31]  S. Guha,et al.  Thin Film Silicon Photovoltaic Technology – From Innovation to Commercialization , 2010 .

[32]  D. Hariskos,et al.  New world record efficiency for Cu(In,Ga)Se2 thin‐film solar cells beyond 20% , 2011 .

[33]  S. Guha,et al.  Innovative dual function nc-SiOx:H layer leading to a >16% efficient multi-junction thin-film silicon solar cell , 2011 .

[34]  Pallab Bhattacharya,et al.  Comprehensive semiconductor science and technology , 2011 .

[35]  U. Rau,et al.  Characterization and simulation of a-Si:H/μc-Si:H tandem solar cells , 2011 .

[36]  S. Guha,et al.  Over 15% Efficient Hydrogenated Amorphous Silicon Based Triple-Junction Solar Cells Incorporating Nanocrystalline Silicon , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[37]  M. Kondo,et al.  High-Efficiency Microcrystalline Silicon and Microcrystalline Silicon-Germanium Alloy Solar Cells , 2011 .

[38]  S. Guha,et al.  Amorphous and Nanocrystalline Silicon Solar Cells and Modules , 2011 .

[39]  S. Guha,et al.  Structural, defect, and device behavior of hydrogenated amorphous Si near and above the onset of microcrystallinity , 1999 .

[40]  M. Kondo Microcrystalline materials and cells deposited by RF glow discharge , 2003 .

[41]  C. Battaglia,et al.  Optimization of ZnO Front Electrodes for High-Efficiency Micromorph Thin-Film Si Solar Cells , 2012, IEEE Journal of Photovoltaics.

[42]  M. Konagai,et al.  Development of high-efficiency tandem silicon solar cells on W-textured Zinc oxide-coated soda-lime glass substrates , 2012, 2012 38th IEEE Photovoltaic Specialists Conference.

[43]  V. Smirnov,et al.  Microcrystalline silicon n‐i‐p solar cells prepared with microcrystalline silicon oxide (μc‐SiOx:H) n‐layer , 2010 .

[44]  C. Ballif,et al.  Mixed-phase p-type silicon oxide containing silicon nanocrystals and its role in thin-film silicon solar cells , 2010 .

[45]  B. Rech,et al.  Oxygen and nitrogen impurities in microcrystalline silicon deposited under optimized conditions : Influence on material properties and solar cell performance , 2009 .

[46]  T. Suezaki,et al.  High Efficiency Thin Film Silicon Hybrid Cell and Module with Newly Developed Innovative Interlayer , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[47]  V. Terrazzoni-Daudrix,et al.  Optimization of amorphous silicon thin film solar cells for flexible photovoltaics , 2008 .

[48]  Deposition of High-Efficiency Microcrystalline Silicon Solar Cells Using SiF $_{\bf 4}$/H$_{\bf 2}$ /Ar Mixtures , 2013, IEEE Journal of Photovoltaics.

[49]  E. Schiff Thermodynamic limit to photonic-plasmonic light-trapping in thin films on metals , 2011 .

[50]  Stanford R. Ovshinsky,et al.  Band‐gap profiling for improving the efficiency of amorphous silicon alloy solar cells , 1989 .

[51]  Herbert Keppner,et al.  Device grade microcrystalline silicon owing to reduced oxygen contamination , 1996 .