Modelling and optimal state-delay control in microbial batch process

Abstract In this paper, we consider optimal control problem involving a time-varying state-delay system arising in 1,3-propanediol microbial batch process. The dynamic system in this problem includes unknown time-varying delay function and unknown kinetic parameters. To optimally determine the unknown delay function and unknown kinetic parameters in the system, the weighted least-squares error between the computed values and experimental data is minimized subject to path constraints. By parameterizing the delay function with piecewise quadratic basis functions, the optimal state-delay control problem is approximated by a sequence of parameter optimization problems. Furthermore, an exact penalty method is utilized to transform these parameter optimization problems into the ones only with box constraints. On this basis, a modified differential evolution algorithm is developed to solve the resulting optimization problems. Finally, numerical results are presented to verify the effectiveness of the developed solution approach.

[1]  A. Zeng,et al.  High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae , 1997 .

[2]  Wang Zong-tao,et al.  Parameter identification and optimization of process for bio-dissimilation of glycerol to 1,3-propanediol in batch culture , 2006 .

[3]  Ponnuthurai N. Suganthan,et al.  Recent advances in differential evolution - An updated survey , 2016, Swarm Evol. Comput..

[4]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[5]  Guang-Ren Duan,et al.  An Exact Penalty Function Method for Continuous Inequality Constrained Optimal Control Problem , 2011, J. Optim. Theory Appl..

[6]  Ryan C. Loxton,et al.  Robust Optimal Control of a Microbial Batch Culture Process , 2015, J. Optim. Theory Appl..

[7]  Yanqin Bai,et al.  Time-scaling transformation for optimal control problem with time-varying delay , 2020, Discrete & Continuous Dynamical Systems - S.

[8]  K. Wong,et al.  The control parametrization enhancing transform for constrained time--delayed optimal control problems , 2002 .

[9]  Kok Lay Teo,et al.  Optimal parameter selection for nonlinear multistage systems with time-delays , 2014, Comput. Optim. Appl..

[10]  Enmin Feng,et al.  Modeling and identification of a nonlinear hybrid dynamical system in batch fermentation of glycerol , 2011, Math. Comput. Model..

[11]  Enmin Feng,et al.  Parameter identification for a nonlinear enzyme-catalytic dynamic system with time-delays , 2015, J. Glob. Optim..

[12]  Yongsheng Yu Optimal Control of a Nonlinear Time-Delay System in Batch Fermentation Process , 2014 .

[13]  Chongyang Liu,et al.  From the SelectedWorks of Chongyang Liu 2013 Modelling and parameter identification for a nonlinear time-delay system in microbial batch fermentation , 2017 .

[14]  Kok Lay Teo,et al.  A new exact penalty method for semi-infinite programming problems , 2014, J. Comput. Appl. Math..

[15]  Andreas Kugi,et al.  Handling constraints in optimal control with saturation functions and system extension , 2010, Syst. Control. Lett..

[16]  Lorenz T. Biegler,et al.  Dynamic optimization of a system with input-dependant time delays , 2016 .

[17]  W. Daud,et al.  A review: Conversion of bioglycerol into 1,3-propanediol via biological and chemical method , 2015 .

[18]  Lorenz T. Biegler,et al.  Simultaneous dynamic optimization strategies: Recent advances and challenges , 2006, Comput. Chem. Eng..

[19]  Enmin Feng,et al.  Modelling and parameter identification of a nonlinear enzyme-catalytic time-delayed switched system and its parallel optimization , 2016 .

[20]  K. Teo,et al.  A unified parameter identification method for nonlinear time-delay systems , 2013 .

[21]  K. Teo,et al.  A new exact penalty function method for continuous inequality constrained optimization problems , 2010 .

[22]  K. Teo,et al.  THE CONTROL PARAMETERIZATION METHOD FOR NONLINEAR OPTIMAL CONTROL: A SURVEY , 2013 .

[23]  Fermentation strategies for 1,3-propanediol production from glycerol using a genetically engineered Klebsiella pneumoniae strain to eliminate by-product formation , 2011, Bioprocess and Biosystems Engineering.

[24]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[25]  H. Maurer,et al.  Optimal control problems with delays in state and control variables subject to mixed control–state constraints , 2009 .

[26]  Enmin Feng,et al.  Modelling and pathway identification involving the transport mechanism of a complex metabolic system in batch culture , 2014, Commun. Nonlinear Sci. Numer. Simul..

[27]  Nicolas Petit,et al.  Optimal Control of Systems Subject to Input-Dependent Hydraulic Delays , 2020, IEEE Transactions on Automatic Control.

[28]  Nicolas Petit,et al.  Dynamic optimization of processes with time varying hydraulic delays , 2019, Journal of Process Control.

[29]  An-Ping Zeng,et al.  Theoretical analysis of effects of metabolic overflow and time delay on the performance and dynamic behavior of a two-stage fermentation process , 2002 .

[30]  Zhilong Xiu,et al.  Mathematical modeling of glycerol fermentation by Klebsiella pneumoniae: Concerning enzyme-catalytic reductive pathway and transport of glycerol and 1,3-propanediol across cell membrane , 2008 .

[31]  Jean-Pierre Richard,et al.  Time-delay systems: an overview of some recent advances and open problems , 2003, Autom..

[32]  Kok Lay Teo,et al.  A computational method for solving time-delay optimal control problems with free terminal time , 2014, Syst. Control. Lett..

[33]  Rein Luus,et al.  Optimal control of time-delay systems by dynamic programming , 1992 .

[34]  Harvey Thomas Banks,et al.  Necessary Conditions for Control Problems with Variable Time Lags , 1968 .

[35]  Xiaojun Tang,et al.  Multiple-interval pseudospectral approximation for nonlinear optimal control problems with time-varying delays , 2019 .

[36]  Kok Lay Teo,et al.  A computational algorithm for functional inequality constrained optimization problems , 1990, Autom..

[37]  N. Petit,et al.  An interior penalty method for optimal control problems with state and input constraints of nonlinear systems , 2016 .

[38]  Zhaohua Gong,et al.  Robust bi-objective optimal control of 1,3-propanediol microbial batch production process , 2019, Journal of Process Control.

[39]  Rein Luus,et al.  Use of Piecewise Linear Continuous Optimal Control for Time-Delay Systems , 1995 .