Material-based figure of merit for caloric materials

The efficient use of reversible thermal effects in magnetocaloric, electrocaloric, and elastocaloric materials is a promising avenue that can lead to a substantially increased efficiency of refrigeration and heat pumping devices, most importantly, those used in household and commercial cooling applications near ambient temperature. A proliferation in caloric material research has resulted in a wide array of materials where only the isothermal change in entropy in response to a handful of different field strengths over a limited range of temperatures has been evaluated and reported. Given the abundance of such data, there is a clear need for a simple and reliable figure of merit enabling fast screening and down-selection to justify further detailed characterization of those material systems that hold the greatest promise. Based on the analysis of several well-known materials that exhibit vastly different magnetocaloric effects, the Temperature averaged Entropy Change is introduced as a suitable early indic...

[1]  A. Rowe,et al.  Material screening metrics and optimal performance of an active magnetic regenerator , 2017 .

[2]  David G. Beers,et al.  The impact of magnetocaloric properties on refrigeration performance and machine design , 2017 .

[3]  David G. Beers,et al.  Experimental impact of magnet and regenerator design on the refrigeration performance of first-order magnetocaloric materials , 2017 .

[4]  V. Franco,et al.  Optimal temperature range for determining magnetocaloric magnitudes from heat capacity , 2016 .

[5]  S. A. Sherif,et al.  A new model of first-order magnetocaloric materials with experimental validation , 2016 .

[6]  Y. Mudryk R5T4 compounds - unique multifunctional intermetallics for basic research and applications , 2016 .

[7]  Kurt Engelbrecht,et al.  Exploring the efficiency potential for an active magnetic regenerator , 2016 .

[8]  T. G. Woodcock,et al.  Giant adiabatic temperature change in FeRh alloys evidenced by direct measurements under cyclic conditions , 2016 .

[9]  Yunho Hwang,et al.  Not-in-kind cooling technologies: A quantitative comparison of refrigerants and system performance , 2016 .

[10]  Kaspar Kirstein Nielsen,et al.  Design and experimental tests of a rotary active magnetic regenerator prototype , 2015 .

[11]  D. Jiles Introduction to Magnetism and Magnetic Materials , 2015 .

[12]  L. Cohen,et al.  Specific heat and entropy change at the first order phase transition of La(Fe-Mn-Si)13-H compounds , 2015 .

[13]  K. K. Nielsen,et al.  Sensitivity study of multi-layer active magnetic regenerators using first order magnetocaloric material La(Fe,Mn,Si)13Hy , 2015 .

[14]  Xavier Moya,et al.  Too cool to work , 2015, Nature Physics.

[15]  K. K. Nielsen,et al.  The influence of hysteresis on the determination of the magnetocaloric effect in Gd5Si2Ge2 , 2015 .

[16]  Lei Zhang,et al.  Magnetocaloric effect, cyclability and coefficient of refrigerant performance in the MnFe(P, Si, B) system , 2014 .

[17]  N. van Dijk,et al.  Taming the First‐Order Transition in Giant Magnetocaloric Materials , 2014, Advanced materials.

[18]  Andrej Kitanovski,et al.  Geometrical optimization of packed-bed and parallel-plate active magnetic regenerators , 2013 .

[19]  Kaspar Kirstein Nielsen,et al.  Materials Challenges for High Performance Magnetocaloric Refrigeration Devices , 2012 .

[20]  Oliver Gutfleisch,et al.  Giant magnetocaloric effect driven by structural transitions. , 2012, Nature materials.

[21]  K. G. Sandeman Magnetocaloric materials: The search for new systems , 2012, 1201.3113.

[22]  Andrew Rowe,et al.  Permanent magnet magnetic refrigerator design and experimental characterization. , 2011 .

[23]  K. Engelbrecht,et al.  Evaluating the effect of magnetocaloric properties on magnetic refrigeration performance , 2010 .

[24]  Alojz Poredoš,et al.  Dimensionless numerical model for simulation of active magnetic regenerator refrigerator , 2010 .

[25]  Mehmet Acet,et al.  Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy. , 2010, Nature materials.

[26]  V. I. Zverev,et al.  The maximum possible magnetocaloric ΔT effect , 2010 .

[27]  E. Talik,et al.  Giant magnetocaloric effect in Tb3Rh , 2009 .

[28]  V. Hardy,et al.  Derivation of the heat capacity anomaly at a first-order transition by using a semi-adiabatic relaxation technique , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[29]  Oliver Gutfleisch,et al.  Magnetocaloric effect in LaFe11.8-xCoxSi1.2 melt-spun ribbons , 2008 .

[30]  A. Rowe,et al.  Experimental investigation of a three-material layered active magnetic regenerator , 2006 .

[31]  Mahmud Tareq Hassan Khan,et al.  Magnetocaloric Properties of Ni2Mn1−xCuxGa , 2006 .

[32]  Kazuaki Fukamichi,et al.  Design and performance of a permanent-magnet rotary refrigerator , 2005 .

[33]  G. Bertotti,et al.  Entropy and entropy production in magnetic systems with hysteresis , 2005 .

[34]  Robert D. Shull,et al.  Reduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron , 2004, Nature.

[35]  Andrew Rowe,et al.  Magnetic refrigeration : Single and multimaterial active magnetic regenerator experiments , 2004 .

[36]  L. Mañosa,et al.  A high-sensitivity differential scanning calorimeter with magnetic field for magnetostructural transitions , 2003 .

[37]  A. Tishin,et al.  The Magnetocaloric Effect and its Applications , 2003 .

[38]  K. Gschneidner,et al.  The giant magnetocaloric effect of optimally prepared Gd5Si2Ge2 , 2003 .

[39]  S. Fujieda,et al.  Itinerant-electron Metamagnetic Transition and Large Magnetocaloric Effects in La(FexSi1-x)13 Compounds and Their Hydrides , 2003 .

[40]  K. Gschneidner,et al.  Recent developments in magnetocaloric materials , 2003 .

[41]  S. Fujieda,et al.  Large magnetocaloric effect in La(FexSi1−x)13 itinerant-electron metamagnetic compounds , 2002 .

[42]  F. D. Boer,et al.  Transition‐Metal‐Based Magnetic Refrigerants for Room‐Temperature Applications. , 2002 .

[43]  F. D. Boer,et al.  Transition-metal-based magnetic refrigerants for room-temperature applications , 2002, Nature.

[44]  Vitalij K. Pecharsky,et al.  Some common misconceptions concerning magnetic refrigerant materials , 2001 .

[45]  K. Gschneidner,et al.  Thermodynamics of the magnetocaloric effect , 2001 .

[46]  Nicola Bianchi,et al.  Design techniques for reducing the cogging torque in surface-mounted PM motors , 2000, Conference Record of the 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy (Cat. No.00CH37129).

[47]  Vitalij K. Pecharsky,et al.  Magnetocaloric effect from indirect measurements: Magnetization and heat capacity , 1999 .

[48]  Ning Zhang,et al.  Synthesis, structure and magnetic entropy change of polycrystalline La1−xKxMnO3+δ , 1999 .

[49]  K. Gschneidner,et al.  MAGNETIC PHASE TRANSITIONS AND THE MAGNETOTHERMAL PROPERTIES OF GADOLINIUM , 1998 .

[50]  K. Gschneidner,et al.  A 3-350 K FAST AUTOMATIC SMALL SAMPLE CALORIMETER , 1997 .

[51]  T. Kuriyama,et al.  Optimum Structure of Multilayer Regenerator with Magnetic Materials , 1996 .

[52]  R. E. Watson,et al.  Monte Carlo and mean-field calculations of the magnetocaloric effect of ferromagnetically interacting clusters , 1992 .

[53]  M. E. Wood,et al.  General analysis of magnetic refrigeration and its optimization using a new concept: maximization of refrigerant capacity , 1985 .

[54]  F. Parker,et al.  Magnetic cooling near Curie temperatures above 300 K , 1984 .

[55]  A R Plummer Introduction to Solid State Physics , 1967 .

[56]  W. Giauque,et al.  Attainment of Temperatures Below 1° Absolute by Demagnetization of Gd 2 (SO 4 ) 3 .8H 2 O , 1933 .

[57]  W. Giauque A THERMODYNAMIC TREATMENT OF CERTAIN MAGNETIC EFFECTS. A PROPOSED METHOD OF PRODUCING TEMPERATURES CONSIDERABLY BELOW 1° ABSOLUTE , 1927 .

[58]  A. Poredos,et al.  Magnetocaloric Energy Conversion , 2015 .

[59]  S. Russek,et al.  The performance of a large-scale rotary magnetic refrigerator , 2014 .

[60]  Andrej Kitanovski,et al.  Experimental comparison of multi-layered La–Fe–Co–Si and single-layered Gd active magnetic regenerators for use in a room-temperature magnetic refrigerator , 2014 .

[61]  Andrew Rowe,et al.  Configuration and performance analysis of magnetic refrigerators , 2011 .

[62]  K. Muller,et al.  Magnetocaloric effect in LaFe 11.8- x Co x Si 1.2 melt-spun ribbons , 2008 .

[63]  Mahmud Tareq Hassan Khan,et al.  Magnetocaloric properties of Ni 2 Mn 1 − x Cu x Ga , 2006 .

[64]  P. Debye Einige Bemerkungen zur Magnetisierung bei tiefer Temperatur , 1926 .