Material-based figure of merit for caloric materials
暂无分享,去创建一个
[1] A. Rowe,et al. Material screening metrics and optimal performance of an active magnetic regenerator , 2017 .
[2] David G. Beers,et al. The impact of magnetocaloric properties on refrigeration performance and machine design , 2017 .
[3] David G. Beers,et al. Experimental impact of magnet and regenerator design on the refrigeration performance of first-order magnetocaloric materials , 2017 .
[4] V. Franco,et al. Optimal temperature range for determining magnetocaloric magnitudes from heat capacity , 2016 .
[5] S. A. Sherif,et al. A new model of first-order magnetocaloric materials with experimental validation , 2016 .
[6] Y. Mudryk. R5T4 compounds - unique multifunctional intermetallics for basic research and applications , 2016 .
[7] Kurt Engelbrecht,et al. Exploring the efficiency potential for an active magnetic regenerator , 2016 .
[8] T. G. Woodcock,et al. Giant adiabatic temperature change in FeRh alloys evidenced by direct measurements under cyclic conditions , 2016 .
[9] Yunho Hwang,et al. Not-in-kind cooling technologies: A quantitative comparison of refrigerants and system performance , 2016 .
[10] Kaspar Kirstein Nielsen,et al. Design and experimental tests of a rotary active magnetic regenerator prototype , 2015 .
[11] D. Jiles. Introduction to Magnetism and Magnetic Materials , 2015 .
[12] L. Cohen,et al. Specific heat and entropy change at the first order phase transition of La(Fe-Mn-Si)13-H compounds , 2015 .
[13] K. K. Nielsen,et al. Sensitivity study of multi-layer active magnetic regenerators using first order magnetocaloric material La(Fe,Mn,Si)13Hy , 2015 .
[14] Xavier Moya,et al. Too cool to work , 2015, Nature Physics.
[15] K. K. Nielsen,et al. The influence of hysteresis on the determination of the magnetocaloric effect in Gd5Si2Ge2 , 2015 .
[16] Lei Zhang,et al. Magnetocaloric effect, cyclability and coefficient of refrigerant performance in the MnFe(P, Si, B) system , 2014 .
[17] N. van Dijk,et al. Taming the First‐Order Transition in Giant Magnetocaloric Materials , 2014, Advanced materials.
[18] Andrej Kitanovski,et al. Geometrical optimization of packed-bed and parallel-plate active magnetic regenerators , 2013 .
[19] Kaspar Kirstein Nielsen,et al. Materials Challenges for High Performance Magnetocaloric Refrigeration Devices , 2012 .
[20] Oliver Gutfleisch,et al. Giant magnetocaloric effect driven by structural transitions. , 2012, Nature materials.
[21] K. G. Sandeman. Magnetocaloric materials: The search for new systems , 2012, 1201.3113.
[22] Andrew Rowe,et al. Permanent magnet magnetic refrigerator design and experimental characterization. , 2011 .
[23] K. Engelbrecht,et al. Evaluating the effect of magnetocaloric properties on magnetic refrigeration performance , 2010 .
[24] Alojz Poredoš,et al. Dimensionless numerical model for simulation of active magnetic regenerator refrigerator , 2010 .
[25] Mehmet Acet,et al. Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy. , 2010, Nature materials.
[26] V. I. Zverev,et al. The maximum possible magnetocaloric ΔT effect , 2010 .
[27] E. Talik,et al. Giant magnetocaloric effect in Tb3Rh , 2009 .
[28] V. Hardy,et al. Derivation of the heat capacity anomaly at a first-order transition by using a semi-adiabatic relaxation technique , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.
[29] Oliver Gutfleisch,et al. Magnetocaloric effect in LaFe11.8-xCoxSi1.2 melt-spun ribbons , 2008 .
[30] A. Rowe,et al. Experimental investigation of a three-material layered active magnetic regenerator , 2006 .
[31] Mahmud Tareq Hassan Khan,et al. Magnetocaloric Properties of Ni2Mn1−xCuxGa , 2006 .
[32] Kazuaki Fukamichi,et al. Design and performance of a permanent-magnet rotary refrigerator , 2005 .
[33] G. Bertotti,et al. Entropy and entropy production in magnetic systems with hysteresis , 2005 .
[34] Robert D. Shull,et al. Reduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron , 2004, Nature.
[35] Andrew Rowe,et al. Magnetic refrigeration : Single and multimaterial active magnetic regenerator experiments , 2004 .
[36] L. Mañosa,et al. A high-sensitivity differential scanning calorimeter with magnetic field for magnetostructural transitions , 2003 .
[37] A. Tishin,et al. The Magnetocaloric Effect and its Applications , 2003 .
[38] K. Gschneidner,et al. The giant magnetocaloric effect of optimally prepared Gd5Si2Ge2 , 2003 .
[39] S. Fujieda,et al. Itinerant-electron Metamagnetic Transition and Large Magnetocaloric Effects in La(FexSi1-x)13 Compounds and Their Hydrides , 2003 .
[40] K. Gschneidner,et al. Recent developments in magnetocaloric materials , 2003 .
[41] S. Fujieda,et al. Large magnetocaloric effect in La(FexSi1−x)13 itinerant-electron metamagnetic compounds , 2002 .
[42] F. D. Boer,et al. Transition‐Metal‐Based Magnetic Refrigerants for Room‐Temperature Applications. , 2002 .
[43] F. D. Boer,et al. Transition-metal-based magnetic refrigerants for room-temperature applications , 2002, Nature.
[44] Vitalij K. Pecharsky,et al. Some common misconceptions concerning magnetic refrigerant materials , 2001 .
[45] K. Gschneidner,et al. Thermodynamics of the magnetocaloric effect , 2001 .
[46] Nicola Bianchi,et al. Design techniques for reducing the cogging torque in surface-mounted PM motors , 2000, Conference Record of the 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy (Cat. No.00CH37129).
[47] Vitalij K. Pecharsky,et al. Magnetocaloric effect from indirect measurements: Magnetization and heat capacity , 1999 .
[48] Ning Zhang,et al. Synthesis, structure and magnetic entropy change of polycrystalline La1−xKxMnO3+δ , 1999 .
[49] K. Gschneidner,et al. MAGNETIC PHASE TRANSITIONS AND THE MAGNETOTHERMAL PROPERTIES OF GADOLINIUM , 1998 .
[50] K. Gschneidner,et al. A 3-350 K FAST AUTOMATIC SMALL SAMPLE CALORIMETER , 1997 .
[51] T. Kuriyama,et al. Optimum Structure of Multilayer Regenerator with Magnetic Materials , 1996 .
[52] R. E. Watson,et al. Monte Carlo and mean-field calculations of the magnetocaloric effect of ferromagnetically interacting clusters , 1992 .
[53] M. E. Wood,et al. General analysis of magnetic refrigeration and its optimization using a new concept: maximization of refrigerant capacity , 1985 .
[54] F. Parker,et al. Magnetic cooling near Curie temperatures above 300 K , 1984 .
[55] A R Plummer. Introduction to Solid State Physics , 1967 .
[56] W. Giauque,et al. Attainment of Temperatures Below 1° Absolute by Demagnetization of Gd 2 (SO 4 ) 3 .8H 2 O , 1933 .
[57] W. Giauque. A THERMODYNAMIC TREATMENT OF CERTAIN MAGNETIC EFFECTS. A PROPOSED METHOD OF PRODUCING TEMPERATURES CONSIDERABLY BELOW 1° ABSOLUTE , 1927 .
[58] A. Poredos,et al. Magnetocaloric Energy Conversion , 2015 .
[59] S. Russek,et al. The performance of a large-scale rotary magnetic refrigerator , 2014 .
[60] Andrej Kitanovski,et al. Experimental comparison of multi-layered La–Fe–Co–Si and single-layered Gd active magnetic regenerators for use in a room-temperature magnetic refrigerator , 2014 .
[61] Andrew Rowe,et al. Configuration and performance analysis of magnetic refrigerators , 2011 .
[62] K. Muller,et al. Magnetocaloric effect in LaFe 11.8- x Co x Si 1.2 melt-spun ribbons , 2008 .
[63] Mahmud Tareq Hassan Khan,et al. Magnetocaloric properties of Ni 2 Mn 1 − x Cu x Ga , 2006 .
[64] P. Debye. Einige Bemerkungen zur Magnetisierung bei tiefer Temperatur , 1926 .