Semigroups of Polyhedra with Prescribed Number of Lattice Points and the k-Frobenius Problem
暂无分享,去创建一个
[1] Stan Wagon,et al. Faster Algorithms for Frobenius Numbers , 2005, Electron. J. Comb..
[2] E. Ehrhart,et al. Polynômes arithmétiques et méthode des polyèdres en combinatoire , 1974 .
[3] David E. Bell. A Theorem Concerning the Integer Lattice , 1977 .
[4] Benjamin Braun. Unimodality problems in Ehrhart theory , 2015, 1505.07377.
[5] Matthias Beck,et al. An Extreme Family of Generalized Frobenius Numbers , 2011, Integers.
[6] Jesús A. De Loera,et al. On the Computation of Clebsch–Gordan Coefficients and the Dilation Effect , 2006, Exp. Math..
[7] Ravi Kannan,et al. Lattice translates of a polytope and the Frobenius problem , 1992, Comb..
[8] Alexander Barvinok,et al. Integer Points in Polyhedra , 2008 .
[9] Imre Bárány,et al. On the number of convex lattice polytopes , 1992 .
[10] Igor Pak,et al. Combinatorics and geometry of Littlewood-Richardson cones , 2005, Eur. J. Comb..
[11] Iskander Aliev,et al. Integer Points in Knapsack Polytopes and s-Covering Radius , 2012, Electron. J. Comb..
[12] Scott T. Chapman,et al. ON DELTA SETS OF NUMERICAL MONOIDS , 2006 .
[13] Sam Payne,et al. Cayley decompositions of lattice polytopes and upper bounds for h*-polynomials , 2008, 0804.3667.
[14] Ira M. Gessel,et al. The Polynomial Part of a Restricted Partition Function Related to the Frobenius Problem , 2001, Electron. J. Comb..
[15] R. Stanley. Combinatorics and commutative algebra , 1983 .
[16] Ramírez Alfonsin,et al. The diophantine frobenius problem , 2005 .
[17] Jesús A. De Loera,et al. Integer Programs with Prescribed Number of Solutions and a Weighted Version of Doignon-Bell-Scarf's Theorem , 2014, IPCO.
[18] A. Ustinov,et al. The solution of Arnold's problem on the weak asymptotics of Frobenius numbers with three arguments , 2009 .
[19] V. I. Arnol'd,et al. Statistics of integral convex polygons , 1980 .
[20] Charles Cochet,et al. Volume Computation for Polytopes and Partition Functions for Classical Root Systems , 2006, Discret. Comput. Geom..
[21] Jeffrey R. Schmidt,et al. The Kostant partition function for simple Lie algebras , 1984 .
[22] B. Sturmfels. Gröbner bases and convex polytopes , 1995 .
[23] Alan F. Karr,et al. Preserving confidentiality of high-dimensional tabulated data: Statistical and computational issues , 2003, Stat. Comput..
[24] V. Barucci. Numerical semigroup algebras , 2006 .
[25] Benjamin Nill. Lattice polytopes having h*-polynomials with given degree and linear coefficient , 2008, Eur. J. Comb..
[26] A. Barvinok,et al. An Algorithmic Theory of Lattice Points in Polyhedra , 1999 .
[27] Jesús A. De Loera,et al. Algebraic and Geometric Ideas in the Theory of Discrete Optimization , 2012, MOS-SIAM Series on Optimization.
[28] Jesús A. De Loera,et al. Effective lattice point counting in rational convex polytopes , 2004, J. Symb. Comput..
[29] Jesús A. De Loera,et al. Short rational functions for toric algebra and applications , 2004, J. Symb. Comput..
[30] Akimichi Takemura,et al. Computing holes in semi-groups and its applications to transportation problems , 2006, Contributions Discret. Math..
[31] Herbert E. Scarf. An observation on the structure of production sets with indivisibilities , 1977 .
[32] J. D. Loera,et al. Triangulations: Structures for Algorithms and Applications , 2010 .
[33] A. Barvinok,et al. Short rational generating functions for lattice point problems , 2002, math/0211146.
[34] Lenny Fukshansky,et al. Generalized Frobenius numbers: Bounds and average behavior , 2011, 1105.0841.
[35] Robert Weismantel,et al. A Polyhedral Frobenius Theorem with Applications to Integer Optimization , 2015, SIAM J. Discret. Math..
[36] Jean-Paul Doignon,et al. Convexity in cristallographical lattices , 1973 .
[37] Akimichi Takemura,et al. A generalization of the integer linear infeasibility problem , 2008, Discret. Optim..
[38] James Stankewicz,et al. On a Generalization of the Frobenius Number , 2010 .
[39] S. Chapman,et al. Full Elasticity in Atomic Monoids and Integral Domains , 2006 .
[40] Günter M. Ziegler,et al. Projecting Lattice Polytopes Without Interior Lattice Points , 2011, Math. Oper. Res..
[41] S. Chapman,et al. The catenary and tame degree of numerical monoids , 2009 .
[42] J. L. Ramírez-Alfonsín. Complexity of the Frobenius problem , 1996 .
[43] Aicke Hinrichs,et al. Expected Frobenius numbers , 2009, J. Comb. Theory, Ser. A.
[44] Alexander Schrijver,et al. Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.
[45] Christopher O'Neill. On factorization invariants and Hilbert functions , 2015 .
[46] Jeffrey Shallit,et al. Unbounded Discrepancy in Frobenius Numbers , 2011, Integers.
[47] Winfried Bruns,et al. Problems and algorithms for affine semigroups , 2001 .
[48] Alexander Barvinok,et al. A course in convexity , 2002, Graduate studies in mathematics.
[49] C. Zong,et al. Classification of Convex lattice polytopes , 2011, 1103.0103.
[50] Friedrich Eisenbrand,et al. Minimizing the number of lattice points in a translated polygon , 2013, SODA.
[51] Jorge L. Ramírez Alfonsín,et al. Gaps in semigroups , 2008, Discret. Math..
[52] T. Tao,et al. The honeycomb model of _{}(ℂ) tensor products I: Proof of the saturation conjecture , 1999 .
[53] Robert Weismantel,et al. On Hilbert bases of polyhedral cones , 1996 .
[54] David A. Cox,et al. Ideals, Varieties, and Algorithms , 1997 .
[55] Iskander Aliev,et al. Feasibility of Integer Knapsacks , 2009, SIAM J. Optim..
[56] Robert Weismantel,et al. Maximal Lattice-Free Polyhedra: Finiteness and an Explicit Description in Dimension Three , 2010, Math. Oper. Res..
[57] A. Barvinok. A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed , 1994 .
[58] Achill Schürmann,et al. Bounds on generalized Frobenius numbers , 2010, Eur. J. Comb..
[59] Bernd Sturmfels,et al. On Vector Partition Functions , 1995, J. Comb. Theory, Ser. A.
[60] M. Brion,et al. Residue formulae, vector partition functions and lattice points in rational polytopes , 1997 .
[61] Matthias Beck,et al. A formula related to the Frobenius problem in two dimensions , 2004 .
[62] M. Vergne,et al. Vector partition functions and generalized dahmen and micchelli spaces , 2010 .
[63] Michele Vergne,et al. Residue formulae for vector partitions and Euler-MacLaurin sums , 2003, Adv. Appl. Math..
[64] Jesús A. De Loera,et al. A quantitative Doignon-Bell-Scarf theorem , 2014, Comb..
[65] Jeffrey C. Lagarias,et al. Bounds for Lattice Polytopes Containing a Fixed Number of Interior Points in a Sublattice , 1991, Canadian Journal of Mathematics.
[66] Askold Khovanskii. Newton polyhedron, Hilbert polynomial, and sums of finite sets , 1992 .
[67] Xianglin Wei,et al. Lattice polygons with two interior lattice points , 2012 .
[68] Oleg Pikhurko,et al. Lattice points in lattice polytopes , 2001 .
[69] Arjen K. Lenstra,et al. Hard Equality Constrained Integer Knapsacks , 2002, Math. Oper. Res..
[70] Wouter Castryck,et al. Moving Out the Edges of a Lattice Polygon , 2012, Discret. Comput. Geom..
[71] A. Strzebonski,et al. FROBENIUS NUMBERS BY LATTICE POINT ENUMERATION , 2007 .