Semigroups of Polyhedra with Prescribed Number of Lattice Points and the k-Frobenius Problem

Given an integral d × n matrix A, the well-studied affine semigroup \(\mathrm{Sg}(A) =\{ b: Ax = b,\ x \in \mathbb{Z}^{n},x \geq 0\}\) can be stratified by the number of lattice points inside the parametric polyhedra P A (b) = { x: Ax = b, x ≥ 0}. Such families of parametric polyhedra appear in many areas of combinatorics, convex geometry, algebra, and number theory. The key themes of this paper are: (1) A structure theory that characterizes precisely the subset Sg ≥ k(A) of all vectors \(b \in \mathrm{Sg}(A)\) such that \(P_{A}(b) \cap \mathbb{Z}^{n}\) has at least k solutions. We demonstrate that this set is finitely generated, it is a union of translated copies of a semigroup which can be computed explicitly via Hilbert bases computations. Related results can be derived for those right-hand-side vectors b for which \(P_{A}(b) \cap \mathbb{Z}^{n}\) has exactly k solutions or fewer than k solutions. (2) A computational complexity theory. We show that, when n, k are fixed natural numbers, one can compute in polynomial time an encoding of \(\mathrm{Sg}_{\geq k}(A)\) as a multivariate generating function, using a short sum of rational functions. As a consequence, one can identify all right-hand-side vectors of bounded norm that have at least k solutions. (3) Applications and computation for the k-Frobenius numbers. Using generating functions we prove that for fixed n, k the k-Frobenius number can be computed in polynomial time. This generalizes a well-known result for k = 1 by R. Kannan. Using some adaptation of dynamic programming we show some practical computations of k-Frobenius numbers and their relatives.

[1]  Stan Wagon,et al.  Faster Algorithms for Frobenius Numbers , 2005, Electron. J. Comb..

[2]  E. Ehrhart,et al.  Polynômes arithmétiques et méthode des polyèdres en combinatoire , 1974 .

[3]  David E. Bell A Theorem Concerning the Integer Lattice , 1977 .

[4]  Benjamin Braun Unimodality problems in Ehrhart theory , 2015, 1505.07377.

[5]  Matthias Beck,et al.  An Extreme Family of Generalized Frobenius Numbers , 2011, Integers.

[6]  Jesús A. De Loera,et al.  On the Computation of Clebsch–Gordan Coefficients and the Dilation Effect , 2006, Exp. Math..

[7]  Ravi Kannan,et al.  Lattice translates of a polytope and the Frobenius problem , 1992, Comb..

[8]  Alexander Barvinok,et al.  Integer Points in Polyhedra , 2008 .

[9]  Imre Bárány,et al.  On the number of convex lattice polytopes , 1992 .

[10]  Igor Pak,et al.  Combinatorics and geometry of Littlewood-Richardson cones , 2005, Eur. J. Comb..

[11]  Iskander Aliev,et al.  Integer Points in Knapsack Polytopes and s-Covering Radius , 2012, Electron. J. Comb..

[12]  Scott T. Chapman,et al.  ON DELTA SETS OF NUMERICAL MONOIDS , 2006 .

[13]  Sam Payne,et al.  Cayley decompositions of lattice polytopes and upper bounds for h*-polynomials , 2008, 0804.3667.

[14]  Ira M. Gessel,et al.  The Polynomial Part of a Restricted Partition Function Related to the Frobenius Problem , 2001, Electron. J. Comb..

[15]  R. Stanley Combinatorics and commutative algebra , 1983 .

[16]  Ramírez Alfonsin,et al.  The diophantine frobenius problem , 2005 .

[17]  Jesús A. De Loera,et al.  Integer Programs with Prescribed Number of Solutions and a Weighted Version of Doignon-Bell-Scarf's Theorem , 2014, IPCO.

[18]  A. Ustinov,et al.  The solution of Arnold's problem on the weak asymptotics of Frobenius numbers with three arguments , 2009 .

[19]  V. I. Arnol'd,et al.  Statistics of integral convex polygons , 1980 .

[20]  Charles Cochet,et al.  Volume Computation for Polytopes and Partition Functions for Classical Root Systems , 2006, Discret. Comput. Geom..

[21]  Jeffrey R. Schmidt,et al.  The Kostant partition function for simple Lie algebras , 1984 .

[22]  B. Sturmfels Gröbner bases and convex polytopes , 1995 .

[23]  Alan F. Karr,et al.  Preserving confidentiality of high-dimensional tabulated data: Statistical and computational issues , 2003, Stat. Comput..

[24]  V. Barucci Numerical semigroup algebras , 2006 .

[25]  Benjamin Nill Lattice polytopes having h*-polynomials with given degree and linear coefficient , 2008, Eur. J. Comb..

[26]  A. Barvinok,et al.  An Algorithmic Theory of Lattice Points in Polyhedra , 1999 .

[27]  Jesús A. De Loera,et al.  Algebraic and Geometric Ideas in the Theory of Discrete Optimization , 2012, MOS-SIAM Series on Optimization.

[28]  Jesús A. De Loera,et al.  Effective lattice point counting in rational convex polytopes , 2004, J. Symb. Comput..

[29]  Jesús A. De Loera,et al.  Short rational functions for toric algebra and applications , 2004, J. Symb. Comput..

[30]  Akimichi Takemura,et al.  Computing holes in semi-groups and its applications to transportation problems , 2006, Contributions Discret. Math..

[31]  Herbert E. Scarf An observation on the structure of production sets with indivisibilities , 1977 .

[32]  J. D. Loera,et al.  Triangulations: Structures for Algorithms and Applications , 2010 .

[33]  A. Barvinok,et al.  Short rational generating functions for lattice point problems , 2002, math/0211146.

[34]  Lenny Fukshansky,et al.  Generalized Frobenius numbers: Bounds and average behavior , 2011, 1105.0841.

[35]  Robert Weismantel,et al.  A Polyhedral Frobenius Theorem with Applications to Integer Optimization , 2015, SIAM J. Discret. Math..

[36]  Jean-Paul Doignon,et al.  Convexity in cristallographical lattices , 1973 .

[37]  Akimichi Takemura,et al.  A generalization of the integer linear infeasibility problem , 2008, Discret. Optim..

[38]  James Stankewicz,et al.  On a Generalization of the Frobenius Number , 2010 .

[39]  S. Chapman,et al.  Full Elasticity in Atomic Monoids and Integral Domains , 2006 .

[40]  Günter M. Ziegler,et al.  Projecting Lattice Polytopes Without Interior Lattice Points , 2011, Math. Oper. Res..

[41]  S. Chapman,et al.  The catenary and tame degree of numerical monoids , 2009 .

[42]  J. L. Ramírez-Alfonsín Complexity of the Frobenius problem , 1996 .

[43]  Aicke Hinrichs,et al.  Expected Frobenius numbers , 2009, J. Comb. Theory, Ser. A.

[44]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[45]  Christopher O'Neill On factorization invariants and Hilbert functions , 2015 .

[46]  Jeffrey Shallit,et al.  Unbounded Discrepancy in Frobenius Numbers , 2011, Integers.

[47]  Winfried Bruns,et al.  Problems and algorithms for affine semigroups , 2001 .

[48]  Alexander Barvinok,et al.  A course in convexity , 2002, Graduate studies in mathematics.

[49]  C. Zong,et al.  Classification of Convex lattice polytopes , 2011, 1103.0103.

[50]  Friedrich Eisenbrand,et al.  Minimizing the number of lattice points in a translated polygon , 2013, SODA.

[51]  Jorge L. Ramírez Alfonsín,et al.  Gaps in semigroups , 2008, Discret. Math..

[52]  T. Tao,et al.  The honeycomb model of _{}(ℂ) tensor products I: Proof of the saturation conjecture , 1999 .

[53]  Robert Weismantel,et al.  On Hilbert bases of polyhedral cones , 1996 .

[54]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[55]  Iskander Aliev,et al.  Feasibility of Integer Knapsacks , 2009, SIAM J. Optim..

[56]  Robert Weismantel,et al.  Maximal Lattice-Free Polyhedra: Finiteness and an Explicit Description in Dimension Three , 2010, Math. Oper. Res..

[57]  A. Barvinok A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed , 1994 .

[58]  Achill Schürmann,et al.  Bounds on generalized Frobenius numbers , 2010, Eur. J. Comb..

[59]  Bernd Sturmfels,et al.  On Vector Partition Functions , 1995, J. Comb. Theory, Ser. A.

[60]  M. Brion,et al.  Residue formulae, vector partition functions and lattice points in rational polytopes , 1997 .

[61]  Matthias Beck,et al.  A formula related to the Frobenius problem in two dimensions , 2004 .

[62]  M. Vergne,et al.  Vector partition functions and generalized dahmen and micchelli spaces , 2010 .

[63]  Michele Vergne,et al.  Residue formulae for vector partitions and Euler-MacLaurin sums , 2003, Adv. Appl. Math..

[64]  Jesús A. De Loera,et al.  A quantitative Doignon-Bell-Scarf theorem , 2014, Comb..

[65]  Jeffrey C. Lagarias,et al.  Bounds for Lattice Polytopes Containing a Fixed Number of Interior Points in a Sublattice , 1991, Canadian Journal of Mathematics.

[66]  Askold Khovanskii Newton polyhedron, Hilbert polynomial, and sums of finite sets , 1992 .

[67]  Xianglin Wei,et al.  Lattice polygons with two interior lattice points , 2012 .

[68]  Oleg Pikhurko,et al.  Lattice points in lattice polytopes , 2001 .

[69]  Arjen K. Lenstra,et al.  Hard Equality Constrained Integer Knapsacks , 2002, Math. Oper. Res..

[70]  Wouter Castryck,et al.  Moving Out the Edges of a Lattice Polygon , 2012, Discret. Comput. Geom..

[71]  A. Strzebonski,et al.  FROBENIUS NUMBERS BY LATTICE POINT ENUMERATION , 2007 .