Evaluation of Minor Losses in Connectors Used in Microirrigation Subunits Using Machine Learning Techniques

AbstractThe proper hydraulic design of microirrigation system subunits requires the characterization of minor losses. To this end, machine learning models based on artificial neural networks [multi...

[1]  Tianqi Chen,et al.  XGBoost: A Scalable Tree Boosting System , 2016, KDD.

[2]  Wei Chen,et al.  A NEW MODEL FOR HEAD LOSS ASSESSMENT OF SCREEN FILTERS DEVELOPED WITH DIMENSIONAL ANALYSIS IN DRIP IRRIGATION SYSTEMS , 2014 .

[3]  P. R. Bullen,et al.  The determination of pipe contraction pressure loss coefficients for incompressible turbulent flow , 1987 .

[4]  Willem Waegeman,et al.  Comparison of statistical regression and data-mining techniques in estimating soil water retention of tropical delta soils. , 2017 .

[5]  Wagner W. A. Bombardelli,et al.  Prediction of Pressure–Discharge Curves of Trapezoidal Labyrinth Channels from Nonlinear Regression and Artificial Neural Networks , 2020, Journal of Irrigation and Drainage Engineering.

[6]  José Antônio Frizzone,et al.  ARTIFICIAL NEURAL NETWORK BASED EQUATION TO ESTIMATE HEAD LOSS ALONG DRIP IRRIGATION LATERALS , 2014 .

[7]  R. Subbaiah,et al.  Hydraulics of microtube emitters: a dimensional analysis approach , 2011, Irrigation Science.

[9]  Guillermo Palau-Salvador,et al.  Integrated Emitter Local Loss Prediction Using Artificial Neural Networks , 2010 .

[10]  Richard Koech,et al.  Minor losses in start connectors of microirrigation laterals , 2017, Irrigation Science.

[11]  Vedat Demir,et al.  Development of a mathematical model to predict head losses from disc filters in drip irrigation systems using dimensional analysis , 2008 .

[12]  Gerard Arbat,et al.  Prediction by neural networks of filtered volume and outlet parameters in micro-irrigation sand filters using effluents , 2012 .

[13]  Andrew E. Mercer,et al.  An integrated SVR and crop model to estimate the impacts of irrigation on daily groundwater levels , 2018 .

[14]  Yoshua Bengio,et al.  Practical Recommendations for Gradient-Based Training of Deep Architectures , 2012, Neural Networks: Tricks of the Trade.

[15]  José Antônio Frizzone,et al.  Modelling head loss along emitting pipes using dimensional analysis , 2015 .

[16]  O. Rettore Neto,et al.  Local Head Loss of Non-Coaxial Emitters Inserted in Polyethylene Pipe , 2009 .

[17]  Vito Ferro,et al.  Applying hypothesis of self-similarity for flow-resistance law of small-diameter plastic pipes , 1997 .

[18]  L. Sobenko,et al.  Characterization of venturi injector using dimensional analysis , 2019, Revista Brasileira de Engenharia Agrícola e Ambiental.

[19]  Francesco Granata,et al.  Evapotranspiration evaluation models based on machine learning algorithms—A comparative study , 2019, Agricultural Water Management.

[20]  Shaoli Wang,et al.  Dynamic prediction of soil salinization in an irrigation district based on the support vector machine , 2013, Math. Comput. Model..

[21]  H. Cai,et al.  Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China , 2018, Agricultural and Forest Meteorology.

[22]  J. Puig-Bargués,et al.  Development of Equations for calculating the Head Loss in Effluent Filtration in Microirrigation Systems using Dimensional Analysis , 2005 .

[23]  Giuseppe Provenzano,et al.  Experimental Analysis of Local Pressure Losses for Microirrigation Laterals , 2004 .

[24]  Gürol Yildirim Total energy loss assessment for trickle lateral lines equipped with integrated in-line and on-line emitters , 2009, Irrigation Science.

[25]  S. S. Zanetti,et al.  Estimating Evapotranspiration Using Artificial Neural Network and Minimum Climatological Data , 2007 .

[26]  Junliang Fan,et al.  Comparison of Support Vector Machine and Extreme Gradient Boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: A case study in China , 2018 .

[27]  Yongtao Hao,et al.  A feature weighted support vector machine and K-nearest neighbor algorithm for stock market indices prediction , 2017, Expert Syst. Appl..

[28]  Leonor Rodríguez-Sinobas,et al.  Determining Minor Head Losses in Drip Irrigation Laterals. I: Methodology , 2002 .

[29]  Max Kuhn,et al.  Building Predictive Models in R Using the caret Package , 2008 .

[30]  Gürol Yıldırım An assessment of hydraulic design of trickle laterals considering effect of minor losses , 2007 .

[31]  José Antônio Frizzone,et al.  Minor Losses through Start Connectors in Microirrigation Laterals: Dimensional Analysis and Artificial Neural Networks Approaches , 2020 .

[32]  Danieli Bariviera Zitterell,et al.  Dimensional analysis approach to estimate local head losses in microirrigation connectors , 2013, Irrigation Science.

[33]  E. R. Likhachev,et al.  Dependence of water viscosity on temperature and pressure , 2003 .

[34]  Antonio P. de Camargo,et al.  Local head loss caused in connections used in micro-irrigation systems , 2019, Revista Brasileira de Engenharia Agrícola e Ambiental.

[35]  Tarlei Arriel Botrel,et al.  Local head loss for uncoaxial drippers inserted in polyethylene pipes , 2009 .

[36]  J. A. Frizzone,et al.  Microirrigação: gotejamento e microaspersão , 2012 .

[37]  Gerard Arbat,et al.  Assessment of head loss equations developed with dimensional analysis for micro irrigation filters using effluents , 2010 .

[38]  Vito Ferro,et al.  Evaluating Pressure Losses in Drip-Irrigation Lines , 1997 .

[39]  A. A. Alazba,et al.  Simulation of water distribution under surface dripper using artificial neural networks , 2017, Comput. Electron. Agric..

[40]  N. S. Raghuwanshi,et al.  Artificial neural networks approach in evapotranspiration modeling: a review , 2010, Irrigation Science.

[41]  Leonor Rodríguez-Sinobas,et al.  Determining minor head losses in drip irrigation laterals. II: Experimental study and validation , 2002 .

[42]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[43]  Mahir Dursun,et al.  An efficient improved photovoltaic irrigation system with artificial neural network based modeling of soil moisture distribution - A case study in Turkey , 2014 .

[44]  Vlad Sandulescu,et al.  Predicting the future relevance of research institutions - The winning solution of the KDD Cup 2016 , 2016, ArXiv.

[45]  David Ardia,et al.  Differential Evolution (DEoptim) for Non-Convex Portfolio Optimization , 2010 .

[46]  Prabhata K. Swamee Design of a Submarine Oil Pipeline , 1993 .

[47]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[48]  José Antônio Frizzone,et al.  Caracterização hidráulica de tubos porosos oriundos de pneus reciclados utilizados em irrigação subsuperficial , 2014 .

[49]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[50]  N Bignell,et al.  Recommended table for the density of water between 0 ?C and 40 ?C based on recent experimental reports , 2001 .

[51]  Stefan Fritsch,et al.  neuralnet: Training of Neural Networks , 2010, R J..

[52]  A. Warrick,et al.  Neuro-Drip: estimation of subsurface wetting patterns for drip irrigation using neural networks , 2010, Irrigation Science.

[53]  P. J. García Nieto,et al.  A new predictive model for the filtered volume and outlet parameters in micro-irrigation sand filters fed with effluents using the hybrid PSO-SVM-based approach , 2016, Comput. Electron. Agric..

[54]  Yuan Yu,et al.  TensorFlow: A system for large-scale machine learning , 2016, OSDI.

[55]  Mohamed A. Mattar,et al.  Artificial neural networks for estimating the hydraulic performance of labyrinth-channel emitters , 2015, Comput. Electron. Agric..

[56]  François Chollet,et al.  Deep Learning with Python , 2017 .

[57]  Hang Guo,et al.  Local resistance of fluid flow across sudden contraction in small channels , 2010 .

[58]  Vedat Demir,et al.  Development of Prediction Models for Friction Losses in Drip Irrigation Laterals equipped with Integrated In-line and On-line Emitters using Dimensional Analysis , 2007 .

[59]  Yoshua Bengio,et al.  Exploring Strategies for Training Deep Neural Networks , 2009, J. Mach. Learn. Res..

[60]  Giuseppe Provenzano,et al.  Analysis of geometrical relationships and friction losses in small-diameter lay-flat polyethylene pipes , 2016 .

[62]  Maksims Volkovs,et al.  Content-based Neighbor Models for Cold Start in Recommender Systems , 2017, RecSys 2017.

[63]  P. J. García Nieto,et al.  Pressure drop modelling in sand filters in micro-irrigation using gradient boosted regression trees , 2018, Biosystems Engineering.

[64]  Ahmed I. Al-Amoud,et al.  Significance of Energy Losses Due to Emitter Connections in Trickle Irrigation Lines , 1995 .

[65]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[66]  Marc Parizeau,et al.  DEAP: evolutionary algorithms made easy , 2012, J. Mach. Learn. Res..