Deciding linear-trigonometric problems

In this paper, we present a decision procedure for certain linear-trigonometric problems for the reals and integers formalized in a suitable first-order language. The inputs are restricted to formulas, where all but one of the quantified variables occur linearly and at most one occurs both linearly and in a specific trigonometric function. Moreover we may allow in addition the integer-part operation in formulas. Besides ordinary quantifiers, we allow also counting quantifiers. Furthermore we also determine the qualitative structure of the connected components of the satisfaction set of the mixed linear-trigonometric variable. We also consider the decision of these problems in subfields of the real algebraic numbers.

[1]  Volker Weispfenning,et al.  Mixed real-integer linear quantifier elimination , 1999, ISSAC '99.

[2]  Thomas Sturm,et al.  REDLOG: computer algebra meets computer logic , 1997, SIGS.

[3]  M. Waldschmidt Simultaneous approximation of numbers connected with the exponential function , 1978, Journal of the Australian Mathematical Society.

[4]  Rüdiger Loos,et al.  Applying Linear Quantifier Elimination , 1993, Comput. J..

[5]  Tomás Recio,et al.  Advances on the Simplification of Sine-Cosine Equations , 1998, J. Symb. Comput..

[6]  Daniel Richardson,et al.  Wu's Method and the Khovanskii Finiteness Theorem , 1991, J. Symb. Comput..

[7]  Volker Weispfenning Deciding linear-exponential problems , 2000, SIGS.

[8]  Thomas Sturm,et al.  Real Quantifier Elimination in Practice , 1997, Algorithmic Algebra and Number Theory.

[9]  Daniel Richardson,et al.  Towards computing non algebraic cylindrical decompositions , 1991, ISSAC '91.

[10]  George J. Pappas,et al.  Decidable Hybrid Systems , 1998 .

[11]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[12]  Daniel Richardson,et al.  Some undecidable problems involving elementary functions of a real variable , 1969, Journal of Symbolic Logic.

[13]  George E. Collins,et al.  Hauptvortrag: Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975, Automata Theory and Formal Languages.

[14]  Richard Liska,et al.  Applying Quantifier Elimination to Stability Analysis of Difference Schemes , 1993, Comput. J..

[15]  Josef Schicho,et al.  Quantifier Elimination for Trigonometric Polynomials by Cylindrical Trigonometric Decomposition , 2000, J. Symb. Comput..

[16]  Mats Jirstrand,et al.  Nonlinear Control System Design by Quantifier Elimination , 1997, J. Symb. Comput..

[17]  Volker Weispfenning,et al.  Parametric linear and quadratic optimization by elimina-tion , 1994 .

[18]  Daniel Richardson,et al.  The elementary constant problem , 1992, ISSAC '92.

[19]  Angus Macintyre,et al.  On the decidability of the real exponential field , 1996 .

[20]  E. Bareiss Sylvester’s identity and multistep integer-preserving Gaussian elimination , 1968 .

[21]  Volker Weispfenning,et al.  The Complexity of Linear Problems in Fields , 1988, Journal of symbolic computation.

[22]  Volker Weispfenning,et al.  Simulation and Optimization by Quantifier Elimination , 1997, J. Symb. Comput..

[23]  Volker Weispfenning Existential equivalence of ordered abelian groups with parameters , 1990, Arch. Math. Log..

[24]  Volker Weispfenning The Complexity of Almost Linear Diophantine Problems , 1990, J. Symb. Comput..

[25]  P. Varaiya,et al.  Decidable hybrid systems , 1996 .

[26]  Josef Schicho,et al.  Algorithms for Trigonometric Curves (Simplification, Implicitization, Parameterization) , 1998, J. Symb. Comput..