Solving the Cahn-Hilliard variational inequality with a semi-smooth Newton method
暂无分享,去创建一个
[1] Stefano Finzi Vita,et al. Area-preserving curve-shortening flows: from phase separation to image processing , 2002 .
[2] Kazufumi Ito,et al. Semi–Smooth Newton Methods for Variational Inequalities of the First Kind , 2003 .
[3] Ralf Kornhuber,et al. Multigrid Methods for Obstacle Problems , 2008 .
[4] Timothy A. Davis,et al. A column pre-ordering strategy for the unsymmetric-pattern multifrontal method , 2004, TOMS.
[5] Charles M. Elliott,et al. The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy Part II: Numerical analysis , 1991, European Journal of Applied Mathematics.
[6] P. Lions,et al. Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .
[7] Harald Garcke,et al. Finite Element Approximation of the Cahn-Hilliard Equation with Degenerate Mobility , 1999, SIAM J. Numer. Anal..
[8] S. Tremaine,et al. On the Origin of Irregular Structure in Saturn's Rings , 2002, astro-ph/0211149.
[9] Charles M. Elliott,et al. The Cahn-Hilliard Model for the Kinetics of Phase Separation , 1989 .
[10] Ralf Kornhuber,et al. On preconditioned Uzawa-type iterations for a saddle point problem with inequality constraints , 2007 .
[11] John W. Barrett,et al. Finite Element Approximation of a Phase Field Model for Void Electromigration , 2004, SIAM J. Numer. Anal..
[12] Bruce M. Irons,et al. A frontal solution program for finite element analysis , 1970 .
[13] Charles M. Elliott,et al. Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy , 1992 .
[14] Joseph W. H. Liu,et al. The Multifrontal Method for Sparse Matrix Solution: Theory and Practice , 1992, SIAM Rev..
[15] Ralf Kornhuber,et al. Nonsmooth Newton Methods for Set-Valued Saddle Point Problems , 2009, SIAM J. Numer. Anal..
[16] J. E. Hilliard,et al. Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .
[17] Robert Nürnberg,et al. A multigrid method for the Cahn-Hilliard equation with obstacle potential , 2009, Appl. Math. Comput..
[18] D. Kinderlehrer,et al. An introduction to variational inequalities and their applications , 1980 .
[19] Charles M. Elliott,et al. `A generalised diffusion equation for phase separation of a multi-component mixture with interfacial free energy' , 1991 .
[20] Shiwei Zhou,et al. Multimaterial structural topology optimization with a generalized Cahn–Hilliard model of multiphase transition , 2006 .
[21] Kunibert G. Siebert,et al. Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.
[22] Timothy A. Davis,et al. Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.
[23] Gene H. Golub,et al. Numerical solution of saddle point problems , 2005, Acta Numerica.
[24] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[25] F. Tröltzsch. Optimale Steuerung partieller Differentialgleichungen , 2005 .
[26] J. Lowengrub,et al. Quasi–incompressible Cahn–Hilliard fluids and topological transitions , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[27] Timothy A. Davis,et al. An Unsymmetric-pattern Multifrontal Method for Sparse Lu Factorization , 1993 .
[28] Xiaojun Chen,et al. Smoothing Methods and Semismooth Methods for Nondifferentiable Operator Equations , 2000, SIAM J. Numer. Anal..
[29] Kazufumi Ito,et al. The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..
[30] Lavinia Sarbu,et al. Primal‐dual active set methods for Allen–Cahn variational inequalities with nonlocal constraints , 2010 .
[31] E. Kuhl,et al. Computational modeling of mineral unmixing and growth An application of the Cahn – Hilliard equation , 2006 .
[32] Harald Garcke,et al. Mathematik Primal-dual active set methods for Allen-Cahn variational inequalities with non-local constraints , 2009 .
[33] Harald Garcke,et al. Mechanical Effects in the Cahn-Hilliard Model: A Review on Mathematical Results , 2005 .
[34] G. Burton. Sobolev Spaces , 2013 .
[35] C. M. Elliott,et al. Weak and variational methods for moving boundary problems , 1982 .
[36] A. Friedman. Variational principles and free-boundary problems , 1982 .
[37] John K. Reid,et al. The Multifrontal Solution of Indefinite Sparse Symmetric Linear , 1983, TOMS.
[38] Xinfu Chen,et al. Global asymptotic limit of solutions of the Cahn-Hilliard equation , 1996 .
[39] Barbara Stoth,et al. Convergence of the Cahn-Hilliard Equation to the Mullins-Sekerka Problem in Spherical Symmetry , 1996 .
[40] J. F. Bloweyl,et al. A phase-field model with a double obstacle potential , 1994 .
[41] James F. Blowey,et al. Curvature Dependent Phase Boundary Motion and Parabolic Double Obstacle Problems , 1993 .
[42] Robert L. Pego,et al. Front migration in the nonlinear Cahn-Hilliard equation , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.