A Priori Error Estimates for Optimal Control Problems with Constraints on the Gradient of the State on Nonsmooth Polygonal Domains

In this article we are concerned with the finite element discretization of optimal control problems subject to a second order elliptic PDE and additional pointwise constraints on the gradient of the state.

[1]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[2]  W. Wollner,et al.  Barrier Methods for Optimal Control Problems with Convex Nonlinear Gradient State Constraints , 2011, SIAM J. Optim..

[3]  R. Hoppe,et al.  Weak-duality based adaptive finite element methods for PDE-constrained optimization with pointwise gradient state-constraints , 2012 .

[4]  Michael Hintermüller,et al.  Moreau-Yosida Regularization in State Constrained Elliptic Control Problems: Error Estimates and Parameter Adjustment , 2009, SIAM J. Numer. Anal..

[5]  Heribert Blum,et al.  On finite element methods for elliptic equations on domains with corners , 1982, Computing.

[6]  Michael Hinze,et al.  A Variational Discretization Concept in Control Constrained Optimization: The Linear-Quadratic Case , 2005, Comput. Optim. Appl..

[7]  A. H. Schatz,et al.  Maximum norm estimates in the finite element method on plane polygonal domains. I , 1978 .

[8]  MICHAEL HINTERMÜLLER,et al.  PDE-Constrained Optimization Subject to Pointwise Constraints on the Control, the State, and Its Derivative , 2009, SIAM J. Optim..

[9]  A. H. Schatz,et al.  A weak discrete maximum principle and stability of the finite element method in _{∞} on plane polygonal domains. I , 1980 .

[10]  Andreas Günther,et al.  Elliptic control problems with gradient constraints—variational discrete versus piecewise constant controls , 2011, Comput. Optim. Appl..

[11]  Eduardo Casas,et al.  Optimal control of semilinear elliptic equations with pointwise constraints on the gradient of the state , 1993 .

[12]  Michael Hintermüller,et al.  The Length of the Primal-Dual Path in Moreau-Yosida-Based Path-Following Methods for State Constrained Optimal Control , 2014, SIAM J. Optim..

[14]  W. Wollner,et al.  A posteriori error estimates for a finite element discretization of interior point methods for an elliptic optimization problem with state constraints , 2010, Comput. Optim. Appl..

[15]  Christoph Ortner,et al.  A priori error estimates for optimal control problems with pointwise constraints on the gradient of the state , 2011, Numerische Mathematik.

[16]  W. Wollner,et al.  Hamburger Beiträge zur Angewandten Mathematik Optimal Control of Elliptic Equations with Pointwise Constraints on the Gradient of the State in Nonsmooth Polygonal Domains , 2012 .

[17]  Michael Ulbrich,et al.  Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces , 2011, MOS-SIAM Series on Optimization.

[18]  J. Douglas,et al.  The stability inLq of theL2-projection into finite element function spaces , 1974 .

[19]  Andreas Günther,et al.  Hamburger Beiträge zur Angewandten Mathematik Finite element approximation of elliptic control problems with constraints on the gradient , 2007 .

[20]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .