Carbon nanotubes as nanopipette: modelling and simulations

This paper shows that carbon nanotubes can be applied to a nanopipette. Nanospace in atomic force microscope multi-wall carbon nanotube tips is filled with molecules and atoms with charges and then, the tips can be applied to nanopipette when the encapsulated media flow off under applying electrostatic forces. Since the nanospace inside the tips can be refilled, the tips can be permanently used in ideal conditions of no chemical reaction and no mechanical deformation. Molecular dynamics simulations for nanopipette applications showed the possibility of nanolithography or single-metallofullerene-transistor array fabrication.

[1]  Arun Majumdar,et al.  Ion transport in nanofluidic channels , 2004 .

[2]  Dong Qian,et al.  Mechanics of carbon nanotubes , 2002 .

[3]  Ho Jung Hwang,et al.  Melting and breaking of ultrathin copper nanobridges , 2003 .

[4]  J. Kang,et al.  Atomic-scale simulations of copper polyhedral nanorods , 2002 .

[5]  J. Sethna,et al.  Wiring up single molecules , 2003 .

[6]  Marc Monthioux,et al.  Carbon nanotube encapsulated fullerenes: a unique class of hybrid materials , 1999 .

[7]  Malcolm L. H. Green,et al.  Structural changes induced in nanocrystals of binary compounds confined within single walled carbon nanotubes: a brief review , 2002 .

[8]  Marc Monthioux,et al.  Abundance of encapsulated C60 in single-wall carbon nanotubes , 1999 .

[9]  Charles M. Lieber,et al.  Covalently functionalized nanotubes as nanometre- sized probes in chemistry and biology , 1998, Nature.

[10]  Oscillations of ultra-thin copper nanobridges at room temperature: molecular dynamics simulations , 2002, cond-mat/0203222.

[11]  M. Hodak,et al.  Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential , 2000 .

[12]  Kwong‐Yu Chan,et al.  Ion Transport in Simple Nanopores , 2004 .

[13]  Y. S. Li,et al.  How free are encapsulated atoms in C60 , 1994 .

[14]  J. Gimzewski,et al.  An electromechanical amplifier using a single molecule , 1997 .

[15]  A. Zettl,et al.  Transformation of BxCyNz nanotubes to pure BN nanotubes , 2002 .

[16]  M. Paulsson,et al.  Conductance manipulation at the molecular level , 1999 .

[17]  C. L. Cheung,et al.  Growth and fabrication with single-walled carbon nanotube probe microscopy tips , 2000 .

[18]  Electro-Fluidic Shuttle Memory Device: Classical Molecular Dynamics Study , 2003, cond-mat/0311539.

[19]  M. Dresselhaus,et al.  Intercalation compounds of graphite , 1981 .

[20]  Oded Millo,et al.  Tunneling spectroscopy of isolated C 60 molecules in the presence of charging effects , 1997 .

[21]  D. Tománek,et al.  ``Bucky Shuttle'' Memory Device: Synthetic Approach and Molecular Dynamics Simulations , 1999 .

[22]  T. Okazaki,et al.  Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes , 2002, Nature.

[23]  F. Iwata,et al.  Submicrometre-scale fabrication of polycarbonate surface using a scanning micropipette probe microscope , 2004 .

[24]  Jinlong Yang,et al.  Negative differential-resistance device involving two C60 molecules , 2000 .

[25]  J. Kang,et al.  A Bucky shuttle three-terminal switching device: classical molecular dynamics study , 2004 .

[26]  Lin‐Lin Wang,et al.  Rotation, translation, charge transfer, and electronic structure of C 60 on Cu(111) surface , 2004 .

[27]  J. Kang,et al.  Pentagonal multi-shell Cu nanowires , 2002 .

[28]  Joachim,et al.  Electronic transparence of a single C60 molecule. , 1995, Physical review letters.

[29]  Miroslav Hodak,et al.  Van der Waals binding energies in graphitic structures , 2002 .

[30]  S. Iijima,et al.  Direct imaging of Sc2@C84 molecules encapsulated inside single-wall carbon nanotubes by high resolution electron microscopy with atomic sensitivity. , 2003, Physical review letters.

[31]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[32]  C. Julien,et al.  Specific Raman signatures of a dimetallofullerene peapod. , 2003, Physical review letters.

[33]  M. Meyyappan,et al.  Carbon nanotube tip probes: stability and lateral resolution in scanning probe microscopy and application to surface science in semiconductors , 2001 .

[34]  S. Iijima,et al.  One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes. , 2000, Physical review letters.

[35]  J. Tersoff,et al.  Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. , 1989, Physical review. B, Condensed matter.

[36]  T. Hertel,et al.  Interaction of C60 with carbon nanotubes and graphite. , 2003, Physical review letters.

[37]  Steven G. Louie,et al.  Stability and Band Gap Constancy of Boron Nitride Nanotubes , 1994 .

[38]  M. Monthioux Filling single-wall carbon nanotubes , 2002 .

[39]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[40]  J. Tersoff,et al.  Empirical interatomic potential for silicon with improved elastic properties. , 1988, Physical review. B, Condensed matter.

[41]  S. Okada,et al.  Energetics and electronic structures of encapsulated C60 in a carbon nanotube. , 2001, Physical review letters.

[42]  A. Zettl,et al.  Packing C60 in Boron Nitride Nanotubes , 2003, Science.

[43]  Malcolm L. H. Green,et al.  The size distribution, imaging and obstructing properties of C60 and higher fullerenes formed within arc-grown single walled carbon nanotubes , 2000 .

[44]  Charles M. Lieber,et al.  Growth of nanotubes for probe microscopy tips , 1999, Nature.

[45]  R. Guirado-López,et al.  Clustering of H2 molecules encapsulated in fullerene structures , 2002 .

[46]  Giorgos Fagas,et al.  Theory of an all-carbon molecular switch , 2002 .

[47]  Paul L. McEuen,et al.  Nanomechanical oscillations in a single-C60 transistor , 2000, Nature.

[48]  M. Monthioux,et al.  Encapsulated C60 in carbon nanotubes , 1998, Nature.

[49]  Alonso,et al.  Theoretical study of the binding of Na clusters encapsulated in the C240 fullerene. , 1996, Physical review. B, Condensed matter.

[50]  Fullerene based devices for molecular electronics , 2001, cond-mat/0108377.

[51]  Dong Qian,et al.  Mechanics of C60 in nanotubes , 2001 .

[52]  Susumu Okada,et al.  Electron-state control of carbon nanotubes by space and encapsulated fullerenes , 2003 .

[53]  Boris I. Yakobson,et al.  FULLERENE NANOTUBES : C1,000,000 AND BEYOND , 1997 .

[54]  Susan B. Sinnott,et al.  Molecular dynamics simulations of the filling and decorating of carbon nanotubules , 1999 .

[55]  Bobby G. Sumpter,et al.  Dynamics of flow inside carbon nanotubes , 1997 .

[56]  B. Dunlap,et al.  Interactions between fullerene (C60) and endohedral alkali atoms , 1992 .

[57]  D. Tománek,et al.  Microscopic formation mechanism of nanotube peapods. , 2002, Physical review letters.

[58]  Jian Wang,et al.  Ab initio modeling of open systems: Charge transfer, electron conduction, and molecular switching of a C 60 device , 2000, cond-mat/0007176.

[59]  David E. Luzzi,et al.  Formation mechanism of fullerene peapods and coaxial tubes: a path to large scale synthesis , 2000 .

[60]  Atomistic study of interaction zone at copper-carbon interfaces , 2001 .

[61]  Bobby G. Sumpter,et al.  Dynamics of fluid flow inside carbon nanotubes , 1996 .

[62]  J. Gimzewski,et al.  Physical principles of the single- C 60 transistor effect , 1998 .

[63]  B. Rice,et al.  Predicting trends in rate parameters for self-diffusion on FCC metal surfaces , 2002 .