The AEROPATH project targeting Pseudomonas aeruginosa: crystallographic studies for assessment of potential targets in early-stage drug discovery

A focused strategy has been directed towards the structural characterization of selected proteins from the bacterial pathogen P. aeruginosa. The objective is to exploit the resulting structural data, in combination with ligand-binding studies, and to assess the potential of these proteins for early-stage antimicrobial drug discovery.

[1]  Frederick M Ausubel,et al.  Correction for Liberati et al., An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants , 2006, Proceedings of the National Academy of Sciences.

[2]  Y. Kallberg,et al.  Coenzyme-based functional assignments of short-chain dehydrogenases/reductases (SDRs). , 2003, Chemico-biological interactions.

[3]  R. Hancock,et al.  Pseudomonas aeruginosa: all roads lead to resistance. , 2011, Trends in microbiology.

[4]  Bill Bynum,et al.  Lancet , 2015, The Lancet.

[5]  C. Hill,et al.  Crystal structure of human uroporphyrinogen III synthase , 2001, The EMBO journal.

[6]  Victor H Hernandez,et al.  Nature Methods , 2007 .

[7]  D. Shlaes The abandonment of antibacterials: why and wherefore? , 2003, Current opinion in pharmacology (Print).

[8]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.

[9]  F. Young Biochemistry , 1955, The Indian Medical Gazette.

[10]  William N. Hunter,et al.  Structure-based Ligand Design and the Promise Held for Antiprotozoan Drug Discovery* , 2009, Journal of Biological Chemistry.

[11]  William N. Hunter,et al.  The Non-mevalonate Pathway of Isoprenoid Precursor Biosynthesis* , 2007, Journal of Biological Chemistry.

[12]  P. Cotter,et al.  Type VI secretion: not just for pathogenesis anymore. , 2010, Cell host & microbe.

[13]  Stefan Schmitt,et al.  DrugPred: A Structure-Based Approach To Predict Protein Druggability Developed Using an Extensive Nonredundant Data Set , 2011, J. Chem. Inf. Model..

[14]  L. Hedstrom IMP dehydrogenase: structure, mechanism, and inhibition. , 2009, Chemical reviews.

[15]  G. Schneider,et al.  Tetrahydrodipicolinate N-Succinyltransferase and Dihydrodipicolinate Synthase from Pseudomonas aeruginosa: Structure Analysis and Gene Deletion , 2012, PloS one.

[16]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[17]  D. Bedgar,et al.  Mechanistic and Structural Studies of Apoform, Binary, and Ternary Complexes of the Arabidopsis Alkenal Double Bond Reductase At5g16970* , 2006, Journal of Biological Chemistry.

[18]  G. Schneider,et al.  Structure of PA4019, a putative aromatic acid decarboxylase from Pseudomonas aeruginosa. , 2011, Acta crystallographica. Section F, Structural biology and crystallization communications.

[19]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[20]  D. Pompliano,et al.  Drugs for bad bugs: confronting the challenges of antibacterial discovery , 2007, Nature Reviews Drug Discovery.

[21]  S. Brunak,et al.  SignalP 4.0: discriminating signal peptides from transmembrane regions , 2011, Nature Methods.

[22]  M. Vijayan,et al.  Role of N and C-terminal tails in DNA binding and assembly in Dps: structural studies of Mycobacterium smegmatis Dps deletion mutants. , 2007, Journal of molecular biology.

[23]  Geoffrey J. Barton,et al.  The Scottish Structural Proteomics Facility: targets, methods and outputs , 2010, Journal of Structural and Functional Genomics.

[24]  R F Standaert,et al.  Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. , 1993, Journal of molecular biology.

[25]  Eric Haugen,et al.  Comprehensive transposon mutant library of Pseudomonas aeruginosa , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Alexei Vagin,et al.  Molecular replacement with MOLREP. , 2010, Acta crystallographica. Section D, Biological crystallography.

[27]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[28]  A G Leslie,et al.  Biological Crystallography Integration of Macromolecular Diffraction Data , 2022 .

[29]  Graeme Winter,et al.  xia2: an expert system for macromolecular crystallography data reduction , 2010 .

[30]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[31]  C. Press Cell host & microbe , 2007 .

[32]  D. Livermore,et al.  Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? , 2002, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[33]  H. Moser,et al.  Physicochemical properties of antibacterial compounds: implications for drug discovery. , 2008, Journal of medicinal chemistry.

[34]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[35]  Zhi-jie Liu,et al.  Crystal structures of the lytic transglycosylase MltA from N.gonorrhoeae and E.coli: insights into interdomain movements and substrate binding. , 2006, Journal of molecular biology.

[36]  K. Kerr,et al.  Pseudomonas aeruginosa: a formidable and ever-present adversary. , 2009, The Journal of hospital infection.

[37]  Elizabeth C. Theil Ferritin protein nanocages use ion channels, catalytic sites, and nucleation channels to manage iron/oxygen chemistry. , 2011, Current opinion in chemical biology.

[38]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[39]  J. Naismith,et al.  The rhamnose pathway. , 2000, Current opinion in structural biology.

[40]  M. Lucock,et al.  Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. , 2000, Molecular genetics and metabolism.

[41]  Waldemar Vollmer,et al.  Architecture of peptidoglycan: more data and more models. , 2010, Trends in microbiology.

[42]  J. Jez,et al.  The aldo-keto reductase (AKR) superfamily: an update. , 2001, Chemico-biological interactions.

[43]  S. Cameron,et al.  Specificity and mechanism of Acinetobacter baumanii nicotinamidase: implications for activation of the front-line tuberculosis drug pyrazinamide. , 2009, Angewandte Chemie.

[44]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.

[45]  C. Hill,et al.  Structure and mechanistic implications of a uroporphyrinogen III synthase-product complex. , 2008, Biochemistry.

[46]  K Henrick,et al.  Electronic Reprint Biological Crystallography Secondary-structure Matching (ssm), a New Tool for Fast Protein Structure Alignment in Three Dimensions Biological Crystallography Secondary-structure Matching (ssm), a New Tool for Fast Protein Structure Alignment in Three Dimensions , 2022 .

[47]  J. Lam,et al.  Review: Lipopolysaccharide biosynthesis in Pseudomonas aeruginosa , 2009, Innate immunity.

[48]  C. Rock,et al.  Is bacterial fatty acid synthesis a valid target for antibacterial drug discovery? , 2011, Current opinion in microbiology.

[49]  W. Hunter,et al.  The structure of Serratia marcescens Lip, a membrane-bound component of the type VI secretion system , 2011, Acta crystallographica. Section D, Biological crystallography.

[50]  E. Ellis Microbial aldo-keto reductases. , 2002, FEMS microbiology letters.

[51]  Stuart P. McElroy,et al.  Assessment of Pseudomonas aeruginosa N 5,N 10-Methylenetetrahydrofolate Dehydrogenase - Cyclohydrolase as a Potential Antibacterial Drug Target , 2012, PloS one.

[52]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[53]  Adam Godzik,et al.  Structural genomics of the Thermotoga maritima proteome implemented in a high-throughput structure determination pipeline , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Randy J Read,et al.  Electronic Reprint Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination , 2022 .

[55]  J. Naismith,et al.  A simple and efficient expression and purification system using two newly constructed vectors. , 2009, Protein expression and purification.

[56]  George T Detitta,et al.  Thermofluor-based high-throughput stability optimization of proteins for structural studies. , 2006, Analytical biochemistry.

[57]  David I. Stuart,et al.  Crystal Structures of Penicillin-Binding Protein 3 from Pseudomonas aeruginosa: Comparison of Native and Antibiotic-Bound Forms , 2011, Journal of molecular biology.

[58]  G. Petsko,et al.  Crystal structure at 2.4 A resolution of Borrelia burgdorferi inosine 5'-monophosphate dehydrogenase: evidence of a substrate-induced hinged-lid motion by loop 6. , 2000, Biochemistry.

[59]  Mei Li,et al.  Crystal structure of uroporphyrinogen III synthase from Pseudomonas syringae pv. tomato DC3000. , 2011, Biochemical and biophysical research communications.

[60]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[61]  Liisa Holm,et al.  Dali server: conservation mapping in 3D , 2010, Nucleic Acids Res..

[62]  W. Hunter,et al.  Pseudomonas aeruginosa 4-Amino-4-Deoxychorismate Lyase: Spatial Conservation of an Active Site Tyrosine and Classification of Two Types of Enzyme , 2011, PloS one.

[63]  A. Papageorgiou,et al.  Crystal structure of a family 45 endoglucanase from Melanocarpus albomyces: mechanistic implications based on the free and cellobiose-bound forms. , 2003, Journal of molecular biology.

[64]  H. Panek,et al.  A whole genome view of prokaryotic haem biosynthesis. , 2002, Microbiology.

[65]  Ian H. Gilbert,et al.  β-Branched acyclic nucleoside analogues as inhibitors of Plasmodium falciparum dUTPase. , 2011, Bioorganic & medicinal chemistry.

[66]  良二 上田 J. Appl. Cryst.の発刊に際して , 1970 .

[67]  Erik Nordling,et al.  Short-chain dehydrogenases/reductases (SDR): the 2002 update. , 2003, Chemico-biological interactions.

[68]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[69]  F. Winkler,et al.  High-resolution crystal structure of AKR11C1 from Bacillus halodurans: an NADPH-dependent 4-hydroxy-2,3-trans-nonenal reductase. , 2005, Journal of molecular biology.

[70]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[71]  W. Minor,et al.  Crystal structure of RNase T, an exoribonuclease involved in tRNA maturation and end turnover. , 2007, Structure.

[72]  Victor S Lamzin,et al.  On the combination of molecular replacement and single-wavelength anomalous diffraction phasing for automated structure determination. , 2009, Acta crystallographica. Section D, Biological crystallography.

[73]  S. Eykyn Microbiology , 1950, The Lancet.