Properties of the Bayesian Parameter Estimation of a Regression Based on Gaussian Processes
暂无分享,去创建一个
[1] T. V. Zykova,et al. Applications of kernel ridge estimation to the problem of computing the aerodynamical characteristics of a passenger plane (in comparison with results obtained with artificial neural networks) , 2011 .
[2] Vladimir Spokoiny,et al. Теорема Бернштейна - фон Мизеса для регрессии на основе гауссовских процессов@@@The Bernstein - von Mises theorem for regression based on Gaussian Processes , 2013 .
[3] K. Mardia,et al. Maximum likelihood estimation of models for residual covariance in spatial regression , 1984 .
[4] Evgeny V. Burnaev,et al. Properties of the posterior distribution of a regression model based on Gaussian random fields , 2013, Autom. Remote. Control..
[5] Andy J. Keane,et al. Engineering Design via Surrogate Modelling - A Practical Guide , 2008 .
[6] V. Spokoiny. Bernstein - von Mises Theorem for growing parameter dimension , 2013, 1302.3430.
[7] Evgeny Burnaev,et al. The Bernstein-von Mises theorem for regression based on Gaussian Processes , 2013 .
[8] David Ruppert,et al. Tapered Covariance: Bayesian Estimation and Asymptotics , 2012 .
[9] Andrew O. Finley,et al. Norges Teknisk-naturvitenskapelige Universitet Approximate Bayesian Inference for Large Spatial Datasets Using Predictive Process Models Approximate Bayesian Inference for Large Spatial Datasets Using Predictive Process Models , 2022 .
[10] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[11] Douglas W. Nychka,et al. Covariance Tapering for Likelihood-Based Estimation in Large Spatial Data Sets , 2008 .
[12] Larry Wasserman,et al. All of Statistics: A Concise Course in Statistical Inference , 2004 .
[13] R. Z. Khasʹminskiĭ,et al. Statistical estimation : asymptotic theory , 1981 .
[14] Larry Wasserman,et al. All of Statistics , 2004 .
[15] Schalk Kok. The asymptotic behaviour of the maximum likelihood function of Kriging approximations using the Gaussian correlation function , 2012 .
[16] V. Spokoiny. Parametric estimation. Finite sample theory , 2011, 1111.3029.