Dependence of tropical‐cyclone intensification on the boundary‐layer representation in a numerical model

We present idealized numerical model experiments to investigate the dependence of tropical-cyclone intensification and, in particular, the kinematic structure of the tropical-cyclone boundary layer on the boundary-layer parametrization in the model. The study is motivated by recent findings highlighting the important dynamical role of the boundary layer in tropical-cyclone intensification. The calculations are carried out using the Pennsylvania State University– National Center for Atmospheric Research fifth-generation mesoscale model (MM5). Predictions using one of five available schemes are compared, not only between themselves, but where possible with recent observational analyses of boundary-layer structure. At this stage the study falls short of being able to advocate the use of a particular scheme, although certain shortcomings of individual schemes are identified. The current inability to determine ‘the optimum scheme’ has implications for the predictability of tropical-cyclone intensification. Copyright © 2010 Royal Meteorological Society

[1]  Nguyen Van Sang,et al.  Do tropical cyclones intensify by WISHE? , 2009 .

[2]  H. Hendon,et al.  Representation and prediction of the Indian Ocean dipole in the POAMA seasonal forecast model , 2009 .

[3]  Gary M. Lackmann,et al.  Analysis of Idealized Tropical Cyclone Simulations Using the Weather Research and Forecasting Model: Sensitivity to Turbulence Parameterization and Grid Spacing , 2009 .

[4]  M. Montgomery,et al.  Balanced boundary layers used in hurricane models , 2008 .

[5]  Wei Wang,et al.  Prediction of Landfalling Hurricanes with the Advanced Hurricane WRF Model , 2008 .

[6]  Roger K. Smith Accurate determination of a balanced axisymmetric vortex in a compressible atmosphere , 2006 .

[7]  R. Rotunno,et al.  An air-sea interaction theory for tropical cyclones [presentation] , 1985 .

[8]  Da‐Lin Zhang,et al.  A High-Resolution Model of the Planetary Boundary Layer—Sensitivity Tests and Comparisons with SESAME-79 Data , 1982 .

[9]  Zavisa Janjic,et al.  The Step-Mountain Coordinate: Physical Package , 1990 .

[10]  A. Betts Non‐precipitating cumulus convection and its parameterization , 1973 .

[11]  Jeffrey D. Kepert,et al.  Observed Boundary Layer Wind Structure and Balance in the Hurricane Core. Part I: Hurricane Georges , 2006 .

[12]  I. Troen,et al.  A simple model of the atmospheric boundary layer; sensitivity to surface evaporation , 1986 .

[13]  Jun A. Zhang,et al.  Evaluation of Planetary Boundary Layer Parameterizations in Tropical Cyclones by Comparison of In Situ Observations and High-Resolution Simulations of Hurricane Isabel (2003). Part I: Initialization, Maximum Winds, and the Outer-Core Boundary Layer , 2009 .

[14]  Jeffrey D. Kepert,et al.  The Dynamics of Boundary Layer Jets within the Tropical Cyclone Core. Part II: Nonlinear Enhancement , 2001 .

[15]  Jeffrey D. Kepert,et al.  The dynamics of boundary layer jets within the tropical cyclone core. Part I: Linear theory , 2001 .

[16]  P. Lacarrére,et al.  Improving the Eddy Kinetic Energy model for planetary boundary layer description , 1983 .

[17]  Nguyen Van Sang,et al.  Tropical cyclone spin‐up revisited , 2009 .

[18]  Nelson L. Seaman,et al.  Evaluation of Numerical Predictions of Boundary Layer Structure during the Lake Michigan Ozone Study , 2000 .

[19]  J. Deardorff,et al.  Parameterization of the Planetary Boundary layer for Use in General Circulation Models1 , 1972 .

[20]  C. L. Jordan MEAN SOUNDINGS FOR THE WEST INDIES AREA , 1958 .

[21]  J. Dudhia A Nonhydrostatic Version of the Penn State–NCAR Mesoscale Model: Validation Tests and Simulation of an Atlantic Cyclone and Cold Front , 1993 .

[22]  Daniel P. Stern,et al.  Evaluation of Planetary Boundary Layer Parameterizations in Tropical Cyclones by Comparison of In Situ Observations and High-Resolution Simulations of Hurricane Isabel (2003). Part II: Inner-Core Boundary Layer and Eyewall Structure , 2009 .

[23]  H. Pan,et al.  Nonlocal Boundary Layer Vertical Diffusion in a Medium-Range Forecast Model , 1996 .

[24]  G. Grell,et al.  A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5) , 1994 .

[25]  Nguyen Van Sang,et al.  Tropical‐cyclone intensification and predictability in three dimensions , 2008 .

[26]  Z. Janjic The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes , 1994 .

[27]  Michael M. Bell,et al.  Observed Structure, Evolution, and Potential Intensity of Category 5 Hurricane Isabel (2003) from 12 to 14 September , 2008 .

[28]  M. Montgomery,et al.  Hurricane boundary‐layer theory , 2010 .

[29]  Roger K. Smith,et al.  A simple model of the hurricane boundary layer revisited , 2008 .

[30]  M. Montgomery,et al.  Sensitivity of tropical‐cyclone models to the surface drag coefficient , 2010 .

[31]  Da‐Lin Zhang,et al.  A Multiscale Numerical Study of Hurricane Andrew (1992). Part IV: Unbalanced Flows , 2001 .

[32]  K. Emanuel Some Aspects of Hurricane Inner-Core Dynamics and Energetics , 1997 .

[33]  G. Mellor,et al.  A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers. , 1974 .

[34]  Seoleun Shin,et al.  Tropical‐cyclone intensification and predictability in a minimal three‐dimensional model , 2008 .

[35]  Jun A. Zhang,et al.  Air-sea exchange in hurricanes : Synthesis of observations from the coupled boundary layer air-sea transfer experiment , 2007 .

[36]  M. Montgomery,et al.  Balanced and unbalanced aspects of tropical cyclone intensification , 2009, Journal of the Atmospheric Sciences.

[37]  Hongyan Zhu,et al.  A minimal axisymmetric hurricane model , 2002 .

[38]  James W. DEARDORFF-National Parameterization of the Planetary Boundary layer for Use in Ceneral Circulation Models , 1972 .

[39]  R. Anthes,et al.  Response of the Hurricane Boundary Layer to Changes of Sea Surface Temperature in a Numerical Model , 1978 .

[40]  Michael M. Bell,et al.  Hurricane Isabel (2003): New Insights into the Physics of Intense Storms. Part I. Mean Vortex Structure and Maximum Intensity Estimates , 2006 .

[41]  Kerry Emanuel,et al.  An Air-Sea Interaction Theory for Tropical Cyclones. Part I: Steady-State Maintenance , 1986 .

[42]  Roger K. Smith A simple model of the hurricane boundary layer , 2003 .

[43]  J. Louis A parametric model of vertical eddy fluxes in the atmosphere , 1979 .

[44]  R. Stull An Introduction to Boundary Layer Meteorology , 1988 .

[45]  J. Franklin,et al.  GPS Dropwindsonde Wind Profiles in Hurricanes and Their Operational Implications , 2003 .

[46]  M. Montgomery,et al.  Buoyancy in tropical cyclones and other rapidly rotating atmospheric vortices , 2005 .

[47]  Scott A. Braun,et al.  Sensitivity of High-Resolution Simulations of Hurricane Bob (1991) to Planetary Boundary Layer Parameterizations , 2000 .

[48]  K. Emanuel Sensitivity of Tropical Cyclones to Surface Exchange Coefficients and a Revised Steady-State Model incorporating Eye Dynamics , 1995 .

[49]  Jeffrey D. Kepert,et al.  Estimating Maximum Surface Winds from Hurricane Reconnaissance Measurements , 2009 .

[50]  J. Kepert,et al.  The Boundary Layer Winds in Hurricanes Danielle (1998) and Isabel (2003) , 2008 .

[51]  F. Marks,et al.  Estimation and Mapping of Hurricane Turbulent Energy Using Airborne Doppler Measurements , 2010 .

[52]  Melville E. Nicholls,et al.  A Vortical Hot Tower Route to Tropical Cyclogenesis. , 2006 .

[53]  Roger K. Smith,et al.  Limitations of a linear model for the hurricane boundary layer , 2009 .

[54]  A. Blackadar,et al.  High resolution models of the planetary boundary layer , 1979 .