On existence and phase separation of solitary waves for nonlinear Schrödinger systems modelling simultaneous cooperation and competition

We study existence and phase separation, and the relation between these two aspects, of positive bound states for the nonlinear elliptic system $$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} - \Delta u_i + \lambda _i u_i = \sum \nolimits _{j=1}^d \beta _{ij} u_j^2 u_i &{} \hbox { in }\, \Omega \\ u_1 =\cdots = u_d=0 &{} \hbox { on }\, \partial \Omega . \end{array}\right. \end{aligned}$$-Δui+λiui=∑j=1dβijuj2uiinΩu1=⋯=ud=0on∂Ω.This system arises when searching for solitary waves for the Gross–Pitaevskii equations. We focus on the case of simultaneous cooperation and competition, that is, we assume that there exist two pairs $$(i_1,j_1)$$(i1,j1) and $$(i_2,j_2)$$(i2,j2) such that $$i_1 \ne j_1$$i1≠j1, $$i_2 \ne j_2$$i2≠j2, $$\beta _{i_1 j_1}>0$$βi1j1>0 and $$\beta _{i_2,j_2}<0$$βi2,j2<0. Our first main results establishes the existence of solutions with at least $$m$$m positive components for every $$m \le d$$m≤d; any such solution is a minimizer of the energy functional $$J$$J restricted on a Nehari-type manifold$$\mathcal {N}$$N. At a later stage, by means of level estimates on the constrained second differential of $$J$$J on $$\mathcal {N}$$N, we show that, under some additional assumptions, any minimizer of $$J$$J on $$\mathcal {N}$$N has all nontrivial components. In order to prove this second result, we analyse the phase separation phenomena which involve solutions of the system in a not completely competitive framework.

[1]  Zhi-Qiang Wang,et al.  Least Energy Solutions for Nonlinear Schrödinger Systems with Mixed Attractive and Repulsive Couplings , 2015 .

[2]  Coupled nonlinear Schrödinger systems with potentials , 2005, math/0506010.

[3]  Adrian Ankiewicz,et al.  PARTIALLY COHERENT SOLITONS ON A FINITE BACKGROUND , 1999 .

[4]  F. Lin,et al.  Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries , 2008 .

[5]  Sandro Stringari,et al.  Bose-Einstein condensation and superfluidity , 2016 .

[6]  Juncheng Wei,et al.  Spikes in two coupled nonlinear Schrödinger equations , 2005 .

[7]  Foek T Hioe,et al.  Solitary Waves for N Coupled Nonlinear Schrodinger Equations , 1999 .

[8]  M. Soljačić,et al.  Polychromatic partially spatially incoherent solitons in a noninstantaneous Kerr nonlinear medium , 2004 .

[9]  E. Gross Structure of a quantized vortex in boson systems , 1961 .

[10]  Juncheng Wei,et al.  Spikes in Two-component Systems of Nonlinear Schrodinger Equations with Trapping Potentials , 2006 .

[11]  S. Terracini,et al.  Multipulse Phases in k-Mixtures of Bose–Einstein Condensates , 2008, 0807.1979.

[12]  Zeev Nehari,et al.  Characteristic values associated with a class of nonlinear second-order differential equations , 1961 .

[13]  Zhaoli Liu,et al.  Multiple Bound States of Nonlinear Schrödinger Systems , 2008 .

[14]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[15]  Susanna Terracini,et al.  Nehari's problem and competing species systems , 2002 .

[16]  Tai-Chia Lin,et al.  Ground State of N Coupled Nonlinear Schrödinger Equations in Rn,n≤3 , 2005 .

[17]  Thomas,et al.  NOTE ON GROUND STATES OF NONLINEAR SCHRODINGER SYSTEMS , 2006 .

[18]  H. Mutka,et al.  Bose–Einstein condensation of the triplet states in the magnetic insulator TlCuCl3 , 2003, Nature.

[19]  D. Walls,et al.  The physics of trapped dilute-gas Bose–Einstein condensates , 1998 .

[20]  Antonio Ambrosetti,et al.  Standing waves of some coupled nonlinear Schrödinger equations , 2007 .

[21]  T. Bartsch,et al.  Bound states for a coupled Schrödinger system , 2007 .

[22]  T. Bartsch,et al.  A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system , 2010 .

[23]  W. Ketterle,et al.  Bose-Einstein condensation , 1997 .

[24]  Zhaoli Liu,et al.  Ground States and Bound States of a Nonlinear Schrödinger System , 2010 .

[25]  Eddy Timmermans Phase Separation of Bose-Einstein Condensates , 1998 .

[26]  Tobias Weth,et al.  Radial Solutions and Phase Separation in a System of Two Coupled Schrödinger Equations , 2008 .

[27]  Hugo Tavares,et al.  Uniform Hölder Bounds for Nonlinear Schrödinger Systems with Strong Competition , 2008, 0810.5537.

[28]  B. Pellacci,et al.  Positive solutions for a weakly coupled nonlinear Schrödinger system , 2006 .

[29]  C. Cosner,et al.  Spatial Ecology via Reaction-Diffusion Equations , 2003 .

[30]  Tadeusz Iwaniec,et al.  THE LIOUVILLE THEOREM , 1998 .

[31]  Carl E. Wieman,et al.  PRODUCTION OF TWO OVERLAPPING BOSE-EINSTEIN CONDENSATES BY SYMPATHETIC COOLING , 1997 .

[32]  Richard S. Palais,et al.  The principle of symmetric criticality , 1979 .

[33]  B. Sirakov Least Energy Solitary Waves for a System of Nonlinear Schrödinger Equations in $${\mathbb{R}^n}$$ , 2007 .

[34]  M. Squassina,et al.  Semiclassical states for weakly coupled nonlinear Schrödinger systems , 2008, 0809.4211.

[35]  Ground State of N Coupled Nonlinear Schrodinger Equations in $${\mathbb{R}}^n, n \leq 3$$ , 2007 .

[36]  Benedetta Noris,et al.  A remark on natural constraints in variational methods and an application to superlinear Schrodinger systems , 2011, 1112.3159.

[37]  Susanna Terracini,et al.  An optimal partition problem related to nonlinear eigenvalues , 2003 .

[38]  Juncheng Wei,et al.  Asymptotic behaviour of solutions of planar elliptic systems with strong competition , 2008 .