Digital Image Sensor-Based Assessment of the Status of Oat (Avena sativa L.) Crops after Frost Damage

The aim of this paper is to classify the land covered with oat crops, and the quantification of frost damage on oats, while plants are still in the flowering stage. The images are taken by a digital colour camera CCD-based sensor. Unsupervised classification methods are applied because the plants present different spectral signatures, depending on two main factors: illumination and the affected state. The colour space used in this application is CIELab, based on the decomposition of the colour in three channels, because it is the closest to human colour perception. The histogram of each channel is successively split into regions by thresholding. The best threshold to be applied is automatically obtained as a combination of three thresholding strategies: (a) Otsu’s method, (b) Isodata algorithm, and (c) Fuzzy thresholding. The fusion of these automatic thresholding techniques and the design of the classification strategy are some of the main findings of the paper, which allows an estimation of the damages and a prediction of the oat production.

[1]  Wen-Hsiang Tsai,et al.  Moment-preserving thresholding: a new approach , 1995 .

[2]  Limin Yang,et al.  Accuracy assessment for the U.S. Geological Survey Regional Land-Cover Mapping Program: New York and New Jersey Region , 2000 .

[3]  Qian Wang,et al.  Mean-shift-based color segmentation of images containing green vegetation , 2009 .

[4]  T. Fetch,et al.  Evaluation of Avena spp. Accessions for Resistance to Oat Stem Rust. , 2005, Plant disease.

[5]  Subhash C. Bagui,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2005, Technometrics.

[6]  H. JoséAntonioMartín,et al.  Orthogonal variant moments features in image analysis , 2010, Inf. Sci..

[7]  Lei Tian,et al.  Environmentally adaptive segmentation algorithm for outdoor image segmentation , 1998 .

[8]  S. W. Searcy,et al.  Vision-based guidance of an agriculture tractor , 1987, IEEE Control Systems Magazine.

[9]  Russell G. Congalton,et al.  Assessing the accuracy of remotely sensed data : principles and practices , 1998 .

[10]  Francis Butler,et al.  A comparison of seven thresholding techniques with the k-means clustering algorithm for measurement of bread-crumb features by digital image analysis , 2006 .

[11]  Xavier P. Burgos-Artizzu,et al.  utomatic segmentation of relevant textures in agricultural images , 2010 .

[12]  Petr Dejmek,et al.  Calibrated color measurements of agricultural foods using image analysis , 2006 .

[13]  P. P. Ling,et al.  Machine vision techniques for measuring the canopy of tomato seedling , 1996 .

[14]  George E. Meyer,et al.  Shape features for identifying young weeds using image analysis , 1994 .

[15]  Wales Sydney,et al.  Autonomous Farming: Modeling andControl ofAgricultural Machinery ina Unified Framework , 2008 .

[16]  R. Eaton,et al.  Autonomous Farming: Modeling and Control of Agricultural Machinery in a Unified Framework , 2008, 2008 15th International Conference on Mechatronics and Machine Vision in Practice.

[17]  Josef Kittler,et al.  Minimum error thresholding , 1986, Pattern Recognit..

[18]  Alberto Tellaeche,et al.  A vision-based method for weeds identification through the Bayesian decision theory , 2008, Pattern Recognit..

[19]  Wen-Hsiang Tsai,et al.  Moment-preserving thresolding: A new approach , 1985, Comput. Vis. Graph. Image Process..

[20]  H. J. Andersen,et al.  Estimation of leaf area index in cereal crops using red-green images. , 2009 .

[21]  Antonia Macedo-Cruz,et al.  Unsupervised classification with ground cover color images. , 2010 .

[22]  J. Schellberg,et al.  Identification of broad-leaved dock (Rumex obtusifolius L.) on grassland by means of digital image processing , 2006, Precision Agriculture.

[23]  Alberto Tellaeche,et al.  Analysis of natural images processing for the extraction of agricultural elements , 2010, Image Vis. Comput..

[24]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[25]  W. Kühbauch,et al.  A new algorithm for automatic Rumex obtusifolius detection in digital images using colour and texture features and the influence of image resolution , 2007, Precision Agriculture.

[26]  James R. Anderson,et al.  A land use and land cover classification system for use with remote sensor data , 1976 .

[27]  Mao-Jiun J. Wang,et al.  Image thresholding by minimizing the measures of fuzzines , 1995, Pattern Recognit..

[28]  Qian Du Unsupervised real-time constrained linear discriminant analysis to hyperspectral image classification , 2007, Pattern Recognit..

[29]  David Jones,et al.  Intensified fuzzy clusters for classifying plant, soil, and residue regions of interest from color images , 2004 .

[30]  R. Congalton Putting the Map Back in Map Accuracy Assessment , 2004 .

[31]  N. PEREZ DE LA BLANCA,et al.  A comparison of multispectral image classifiers using high-dimensional simulated data sets , 2007 .

[32]  Xavier P. Burgos-Artizzu,et al.  Real-time Image Processing for the Guidance of a Small Agricultural Field Inspection Vehicle , 2008, 2008 15th International Conference on Mechatronics and Machine Vision in Practice.

[33]  A. Robertson The CIE 1976 Color-Difference Formulae , 1977 .

[34]  Rosa Maria Valdovinos,et al.  Performance Analysis of Classifier Ensembles: Neural Networks Versus Nearest Neighbor Rule , 2007, IbPRIA.

[35]  L. Pacheco,et al.  Colour image processing , 2008, 2008 IEEE International Conference on Automation, Quality and Testing, Robotics.

[36]  H. JoséAntonioMartín,et al.  Dynamic Clustering and Modeling Approaches for Fusion Plasma Signals , 2009, IEEE Transactions on Instrumentation and Measurement.

[37]  Joan S. Weszka,et al.  A survey of threshold selection techniques , 1978 .

[38]  Qihao Weng,et al.  A survey of image classification methods and techniques for improving classification performance , 2007 .

[39]  Roger Y. Tsai,et al.  A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses , 1987, IEEE J. Robotics Autom..

[40]  Vincent Kanade,et al.  Clustering Algorithms , 2021, Wireless RF Energy Transfer in the Massive IoT Era.

[41]  Marcus Bräutigam,et al.  Development and characterization of an oat TILLING-population and identification of mutations in lignin and β-glucan biosynthesis genes , 2010, BMC Plant Biology.

[42]  C. Daughtry,et al.  Evaluation of Digital Photography from Model Aircraft for Remote Sensing of Crop Biomass and Nitrogen Status , 2005, Precision Agriculture.

[43]  Jaime Gomez-Gil,et al.  Testing different color spaces based on hue for the environmentally adaptive segmentation algorithm (EASA) , 2009 .

[44]  L. Antonio Mariscal-Amaro,et al.  Genética de la resistencia a roya del tallo (Puccinia graminis f. sp. avenae Erikss. & Henning) en tres genotipos de avena (Avena sativa L.) , 2009 .

[45]  M. Uemura,et al.  A Comparison of Freezing Injury in Oat and Rye: Two Cereals at the Extremes of Freezing Tolerance , 1994, Plant physiology.

[46]  Thierry Pun,et al.  A new method for grey-level picture thresholding using the entropy of the histogram , 1980 .

[47]  T. W. Ridler,et al.  Picture thresholding using an iterative selection method. , 1978 .

[48]  Pramod K. Varshney,et al.  Unsupervised classification of hyperspectral data: an ICA mixture model based approach , 2004 .

[49]  G. Meyer,et al.  Verification of color vegetation indices for automated crop imaging applications , 2008 .

[50]  J. Huerta-Espino,et al.  Genetics of resistance to stem rust (Puccinia graminis f. sp. avenae) in three genotypes of oat (Avena sativa L.). , 2009 .

[51]  Brian L. Steward,et al.  Video Processing for Early Stage Maize Plant Detection , 2004 .

[52]  Antonia Macedo-Cruz,et al.  Clasificación no supervisada con imágenes a color de cobertura terrestre , 2010 .