Exponential ionic drift: fast switching and low volatility of thin-film memristors

We investigate the exponential dependence of switching speeds in thin-film memristors for high electric fields and elevated temperatures. An existing nonlinear ionic drift model and our simulation results explain the very large ratios for the state lifetime to switching speed experimentally observed in devices for which resistance switching is due to ion migration. Given the activation barriers of the drifting species, it is possible to predict the volatility and switching time for various material systems.

[1]  The effect of the addition of some alkaloids on the rate of solution of iron in dilute hydrochloric acid , 1924 .

[2]  N. Cabrera,et al.  Theory of the oxidation of metals , 1949 .

[3]  R. A. Parker,et al.  Static Dielectric Constant of Rutile (TiO2), 1.6-1060°K , 1961 .

[4]  R. A. Parker Lorentz Corrections in Rutile , 1961 .

[5]  R. C. Miller,et al.  Far Infrared Dielectric Dispersion in BaTiO3, SrTiO3, and TiO2 , 1962 .

[6]  R. Gurney,et al.  Electronic Processes in Ionic Crystals , 1964 .

[7]  W. D. Ohlsen,et al.  Defects in Rutile. II. Diffusion of Interstitial Ions , 1968 .

[8]  D. L. Staebler,et al.  Electrocoloration in SrTiO3: Vacancy Drift and Oxidation-Reduction of Transition Metals , 1971 .

[9]  N. F. Rooij,et al.  Influence of positive ions on the current-voltage characteristics of MOS structures , 1978 .

[10]  Mills,et al.  Quantum and thermal effects in H2 dissociative adsorption: Evaluation of free energy barriers in multidimensional quantum systems. , 1994, Physical review letters.

[11]  Rainer Waser,et al.  Grain boundaries in dielectric and mixed-conducting ceramics , 2000 .

[12]  Yuan Taur,et al.  Device scaling limits of Si MOSFETs and their application dependencies , 2001, Proc. IEEE.

[13]  B. Ahn,et al.  Electromigration model for the prediction of lifetime based on the failure unit statistics in aluminum metallization , 2003 .

[14]  J. McPherson,et al.  Thermochemical description of dielectric breakdown in high dielectric constant materials , 2003 .

[15]  Application of nonlinear conductivity spectroscopy to ion transport in solid electrolytes , 2004, cond-mat/0412119.

[16]  K. Terabe,et al.  Quantized conductance atomic switch , 2005, Nature.

[17]  Judy S. DeLoache,et al.  Mindful of symbols. , 2005, Scientific American.

[18]  R. Stanley Williams,et al.  Electrical characterization of Al/AlOx/molecule/Ti/Al devices , 2005 .

[19]  K. Richter,et al.  Introducing Molecular Electronics , 2005 .

[20]  T. Hasegawa,et al.  Switching Property of Atomic Switch Controlled by Solid Electrochemical Reaction , 2006 .

[21]  D. Strukov,et al.  CMOL: Devices, Circuits, and Architectures , 2006 .

[22]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[23]  Elizabeth C. Dickey,et al.  Prediction of high-temperature point defect formation in TiO2 from combined ab initio and thermodynamic calculations , 2007 .

[24]  J. C. Scott,et al.  Nonvolatile Memory Elements Based on Organic Materials , 2007 .

[25]  N. Browning,et al.  Diffusion mechanisms of native point defects in rutileTiO2:Ab initiototal-energy calculations , 2007 .

[26]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[27]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.