Sigref- A Symbolic Bisimulation Tool Box

We present a uniform signature-based approach to compute the most popular bisimulations. Our approach is implemented symbolically using BDDs, which enables the handling of very large transition systems. Signatures for the bisimulations are built up from a few generic building blocks, which naturally correspond to efficient BDD operations. Thus, the definition of an appropriate signature is the key for a rapid development of algorithms for other types of bisimulation. We provide experimental evidence of the viability of this approach by presenting computational results for many bisimulations on real-world instances. The experiments show cases where our framework can handle state spaces efficiently that are far too large to handle for any tool that requires an explicit state space description.

[1]  Fabio Somenzi,et al.  CUDD: CU Decision Diagram Package Release 2.2.0 , 1998 .

[2]  B. Becker,et al.  Analysis of Large Safety-Critical Systems : A quantitative Approach ? , 2006 .

[3]  Edmund M. Clarke,et al.  Symbolic Model Checking: 10^20 States and Beyond , 1990, Inf. Comput..

[4]  Scott A. Smolka,et al.  CCS expressions, finite state processes, and three problems of equivalence , 1983, PODC '83.

[5]  Simona Orzan,et al.  Distributed Branching Bisimulation Reduction of State Spaces , 2003, Electron. Notes Theor. Comput. Sci..

[6]  Robert de Simone,et al.  Symbolic Bisimulation Minimisation , 1992, CAV.

[7]  Randal E. Bryant,et al.  Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.

[8]  Agostino Dovier,et al.  Rank-Based Symbolic Bisimulation (and Model Checking) , 2002, WoLLIC.

[9]  Jan A. Bergstra,et al.  Branching time and orthogonal bisimulation equivalence , 2003, Theor. Comput. Sci..

[10]  Alain Kerbrat,et al.  CADP - A Protocol Validation and Verification Toolbox , 1996, CAV.

[11]  Bernd Becker,et al.  Minimization of large state spaces using symbolic branching bisimulation , 2006, 2006 IEEE Design and Diagnostics of Electronic Circuits and systems.

[12]  Robert K. Brayton,et al.  On Computing the Transitive Closure of a State Transition Relation , 1993, 30th ACM/IEEE Design Automation Conference.

[13]  Matthias Kuntz,et al.  Symbolic Performance and Dependability Evaluation with the Tool CASPA , 2004, FORTE Workshops.

[14]  Nicolas Halbwachs,et al.  Minimal Model Generation , 1990, CAV.

[15]  Jos C. M. Baeten,et al.  Another Look at Abstraction in Process Algebra (Extended Abstract) , 1987, ICALP.

[16]  Edmund M. Clarke,et al.  Sequential circuit verification using symbolic model checking , 1991, DAC '90.

[17]  David Harel,et al.  Modeling Reactive Systems With Statecharts : The Statemate Approach , 1998 .

[18]  Robin Milner,et al.  Lectures on a Calculus for Communicating Systems , 1984, Seminar on Concurrency.

[19]  Joseph Sifakis,et al.  Safety for Branching Time Semantics , 1991, ICALP.

[20]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.

[21]  Holger Hermanns,et al.  Interactive Markov Chains , 2002, Lecture Notes in Computer Science.

[22]  Ingo Wegener,et al.  Branching Programs and Binary Decision Diagrams , 1987 .

[23]  Holger Hermanns,et al.  Priority and maximal progress are completely axiomatisable , 1998 .

[24]  Ugo Montanari,et al.  Dynamic congruence vs. progressing bisimulation for CCS , 1992, Fundam. Informaticae.

[25]  Holger Hermanns,et al.  On Combining Functional Verification and Performance Evaluation Using CADP , 2002, FME.

[26]  Holger Hermanns,et al.  Priority and Maximal Progress Are Completely Axioatisable (Extended Abstract) , 1998, CONCUR.

[27]  Nadia Tawbi,et al.  Specification and Verification of the PowerScaleTM Bus Arbitration Protocol: An Industrial Experiment with LOTOS , 1996, FORTE.

[28]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[29]  Dimitra Giannakopoulou,et al.  Model checking for concurrent software architectures , 1999 .

[30]  G. Ciardo,et al.  ON THE USE OF KRONECKER OPERATORS FOR THE SOLUTION OF GENERALIZED STOCHASTIC PETRI NETS , 1996 .

[31]  Rob J. van Glabbeek,et al.  Branching time and abstraction in bisimulation semantics , 1996, JACM.

[32]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[33]  Simona Orzan,et al.  A distributed algorithm for strong bisimulation reduction of state spaces , 2004, International Journal on Software Tools for Technology Transfer.

[34]  Robin Milner,et al.  A Modal Characterisation of Observable Machine-Behaviour , 1981, CAAP.

[35]  Bernhard Steffen,et al.  Compositional minimisation of finite state systems using interface specifications , 1996, Formal Aspects of Computing.

[36]  Nicolas Halbwachs,et al.  Minimal State Graph Generation , 1992, Sci. Comput. Program..

[37]  Rob J. van Glabbeek,et al.  The Linear Time - Branching Time Spectrum II , 1993, CONCUR.

[38]  Robert E. Tarjan,et al.  Three Partition Refinement Algorithms , 1987, SIAM J. Comput..

[39]  Jan Friso Groote,et al.  An Efficient Algorithm for Branching Bisimulation and Stuttering Equivalence , 1990, ICALP.

[40]  Nils Klarlund An n log n Algorithm for Online BDD Refinement , 1995 .