The Evidence for Increased L1 Activity in the Site of Human Adult Brain Neurogenesis

Retroelement activity is a common source of polymorphisms in human genome. The mechanism whereby retroelements contribute to the intraindividual genetic heterogeneity by inserting into the DNA of somatic cells is gaining increasing attention. Brain tissues are suspected to accumulate genetic heterogeneity as a result of the retroelements somatic activity. This study aims to expand our understanding of the role retroelements play in generating somatic mosaicism of neural tissues. Whole-genome Alu and L1 profiling of genomic DNA extracted from the cerebellum, frontal cortex, subventricular zone, dentate gyrus, and the myocardium revealed hundreds of somatic insertions in each of the analyzed tissues. Interestingly, the highest concentration of such insertions was detected in the dentate gyrus—the hotspot of adult neurogenesis. Insertions of retroelements and their activity could produce genetically diverse neuronal subsets, which can be involved in hippocampal-dependent learning and memory.

[1]  M. Kamata,et al.  Deep Sequencing Reveals Low Incidence of Endogenous LINE-1 Retrotransposition in Human Induced Pluripotent Stem Cells , 2014, PloS one.

[2]  Jennifer A. Erwin,et al.  Mobile DNA elements in the generation of diversity and complexity in the brain , 2014, Nature Reviews Neuroscience.

[3]  K. Kasai,et al.  Increased L1 Retrotransposition in the Neuronal Genome in Schizophrenia , 2014, Neuron.

[4]  F. Gage,et al.  The Role of Transposable Elements in Health and Diseases of the Central Nervous System , 2013, The Journal of Neuroscience.

[5]  Hagen B. Huttner,et al.  Dynamics of Hippocampal Neurogenesis in Adult Humans , 2013, Cell.

[6]  Piero Carninci,et al.  Edinburgh Research Explorer Endogenous Retrotransposition Activates Oncogenic Pathways in Hepatocellular Carcinoma Endogenous Retrotransposition Activates Oncogenic Pathways in Hepatocellular Carcinoma , 2022 .

[7]  D. Largaespada,et al.  Extensive somatic L1 retrotransposition in colorectal tumors , 2012, Genome research.

[8]  C. Walsh,et al.  Single-Neuron Sequencing Analysis of L1 Retrotransposition and Somatic Mutation in the Human Brain , 2012, Cell.

[9]  Lovelace J. Luquette,et al.  Landscape of Somatic Retrotransposition in Human Cancers , 2012, Science.

[10]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[11]  S. Tonegawa,et al.  Young Dentate Granule Cells Mediate Pattern Separation, whereas Old Granule Cells Facilitate Pattern Completion , 2012, Cell.

[12]  Fang Liu,et al.  Identification and characterization of neuroblasts in the subventricular zone and rostral migratory stream of the adult human brain , 2011, Cell Research.

[13]  J. Mattick,et al.  Somatic retrotransposition alters the genetic landscape of the human brain , 2011, Nature.

[14]  Mitchel S. Berger,et al.  Corridors of Migrating Neurons in Human Brain and Their Decline during Infancy , 2011, Nature.

[15]  Fred H. Gage,et al.  L1 retrotransposition in neurons is modulated by MeCP2 , 2010, Nature.

[16]  H. Kazazian,et al.  High-throughput sequencing reveals extensive variation in human-specific L1 content in individual human genomes. , 2010, Genome research.

[17]  A. Nekrutenko,et al.  Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences , 2010, Genome Biology.

[18]  Andrew F. Neuwald,et al.  Natural Mutagenesis of Human Genomes by Endogenous Retrotransposons , 2010, Cell.

[19]  H. Taylor,et al.  Inhibition of LINE-1 and Alu retrotransposition by exosomes encapsidating APOBEC3G and APOBEC3F. , 2010, Virology.

[20]  Daniel J. Blankenberg,et al.  Galaxy: A Web‐Based Genome Analysis Tool for Experimentalists , 2010, Current protocols in molecular biology.

[21]  I. Mamedov,et al.  Retroposons in modern human genome evolution , 2009, Russian Journal of Bioorganic Chemistry.

[22]  M. C. Marchetto,et al.  Environmental influence on L1 retrotransposons in the adult hippocampus , 2009, Hippocampus.

[23]  Gene W. Yeo,et al.  Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis , 2009, Nature Neuroscience.

[24]  Gene W. Yeo,et al.  L1 retrotransposition in human neural progenitor cells , 2009, Nature.

[25]  L. Saksida,et al.  A Functional Role for Adult Hippocampal Neurogenesis in Spatial Pattern Separation , 2009, Science.

[26]  E. Ostertag,et al.  L1 retrotransposition occurs mainly in embryogenesis and creates somatic mosaicism. , 2009, Genes & development.

[27]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[28]  F. Gage,et al.  Mechanisms and Functional Implications of Adult Neurogenesis , 2008, Cell.

[29]  G. Hannon,et al.  The Piwi-piRNA Pathway Provides an Adaptive Defense in the Transposon Arms Race , 2007, Science.

[30]  P. Eriksson,et al.  Response to Comment on "Human Neuroblasts Migrate to the Olfactory Bulb via a Lateral Ventricular Extension" , 2007, Science.

[31]  J. V. Moran,et al.  LINE-1 retrotransposition in human embryonic stem cells. , 2007, Human molecular genetics.

[32]  Ravi Sachidanandam,et al.  Developmentally Regulated piRNA Clusters Implicate MILI in Transposon Control , 2007, Science.

[33]  I. Mamedov,et al.  Most recent AluY insertions in human gene introns reduce the content of the primary transcripts in a cell type specific manner. , 2007, Gene.

[34]  G. Hannon,et al.  MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. , 2007, Developmental cell.

[35]  Vetle I. Torvik,et al.  Alu elements within human mRNAs are probable microRNA targets. , 2006, Trends in genetics : TIG.

[36]  N. Yang,et al.  L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells , 2006, Nature Structural &Molecular Biology.

[37]  Eytan Domany,et al.  Alu elements contain many binding sites for transcription factors and may play a role in regulation of developmental processes , 2006, BMC Genomics.

[38]  Deepak Grover,et al.  dbRIP: A highly integrated database of retrotransposon insertion polymorphisms in humans , 2006, Human mutation.

[39]  P. Deininger,et al.  LINE-1 RNA splicing and influences on mammalian gene expression , 2006, Nucleic acids research.

[40]  Daniel J. Blankenberg,et al.  Galaxy: a platform for interactive large-scale genome analysis. , 2005, Genome research.

[41]  Fred H. Gage,et al.  Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition , 2005, Nature.

[42]  I. Mamedov,et al.  Whole-genome experimental identification of insertion/deletion polymorphisms of interspersed repeats by a new general approach , 2005, Nucleic acids research.

[43]  N. Bannert,et al.  Retroelements and the human genome: New perspectives on an old relation , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Mitchel S. Berger,et al.  Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration , 2004, Nature.

[45]  A. Buzdin,et al.  Genome-wide comparison of differences in the integration sites of interspersed repeats between closely related genomes. , 2002, Nucleic acids research.

[46]  M. Batzer,et al.  Alu repeats and human genomic diversity , 2002, Nature Reviews Genetics.

[47]  Jef D. Boeke,et al.  Human L1 Retrotransposition: cisPreference versus trans Complementation , 2001, Molecular and Cellular Biology.

[48]  M. Batzer,et al.  Alu repeats and human disease. , 1999, Molecular genetics and metabolism.

[49]  F. Gage,et al.  Neurogenesis in the adult human hippocampus , 1998, Nature Medicine.

[50]  Jef D Boeke,et al.  Human L1 Retrotransposon Encodes a Conserved Endonuclease Required for Retrotransposition , 1996, Cell.

[51]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[52]  I. Mamedov,et al.  [A new database on polymorphic retroelements in human genome (PRED)]. , 2008, Молекулярная биология.

[53]  M. Batzer,et al.  Retrotransposable elements and human disease. , 2006, Genome dynamics.

[54]  L. Scrucca,et al.  qcc: An R package for quality control charting and statistical process control , 2004 .