The methyl bromide molecule: A critical consideration of perturbations in spectra

Abstract This work gives an extensive critique of studies on methyl bromide and all its isotopic varieties with special stress on their rotational, vibrational, and rovibrational spectra. The rotational constants of more than 40 vibrational states of CH3Br and 20 of CD3Br, as well as of the ground states of all varieties, were critically examined and corrected where needed. An almost complete set of harmonic and anharmonic constants for CH3Br was derived. From the set of rotation-vibration interaction constants, new accurate equilibrium constants Ae and Be have been evaluated for CH379Br, CH381Br, CD379Br, CD381Br, from which the following equilibrium structure is obtained: r e (CH) = 1.0823 A ; r e (CBr) = 1.9340 A ; α(HCH) = 111.157°.

[1]  E. F. Barker,et al.  On the Infrared and Raman Spectra of Methyl Compounds , 1934 .

[2]  G. Winnewisser,et al.  Pressure broadening, Stark, and double-resonance spectroscopy of CH 3 Br using a CO 2 laser , 1972 .

[3]  William F. Murphy,et al.  Gas Phase Raman Intensities: A Review of “Pre-Laser” Data , 1969 .

[4]  J. Nakamura,et al.  Vibration-Rotation Spectra, the Coriolis Coupling Constants and the Intramolecular Fore Field of Symmetric Top Molecules. II. Analysis of the Overtones and Combination Tones of Methyl Bromide , 1965 .

[5]  J. Goldstein,et al.  The Microwave Spectra of the Deuterated Methyl Halides , 1952 .

[6]  B. Crawford,et al.  Vibrational Intensities. VIII. CH3 and CD3 Chloride, Bromide, and Iodide , 1957 .

[7]  J. Overend,et al.  The ν3 band of CH3Br at high resolution , 1971 .

[8]  E. Taillandier,et al.  Vibrational properties of polyatomic molecules by quantum chemical methods , 1980 .

[9]  H. Matsuura,et al.  Detailed analysis of ν5 of CH3I: Fermi and Coriolis resonances with ν3+ν6 and ν2 , 1973 .

[10]  J. Kauppinen,et al.  Infrared spectrum of the ν6 band of CD3Br , 1981 .

[11]  J. Nakamura,et al.  Fermi resonances in the rotational structure of the infrared spectra of methyl iodide , 1967 .

[12]  W. J. Thomas,et al.  Millimeter Wave Spectra and Centrifugal Stretching Constants of the Methyl Halides , 1954 .

[13]  G. Graner,et al.  The vibration-rotation bands v2 and v5 of methyl bromide , 1975 .

[14]  C. Townes,et al.  Structure of the Methyl Halides , 1952 .

[15]  C. Betrencourt-Stirnemann Identification et analyse de la composante parallèle de (ν 2 + 2ν5 ) de CH3Br , 1975 .

[16]  C. Lin,et al.  Linewidths of the Rotational Spectra of Symmetric‐Top Molecules , 1968 .

[17]  G. Graner Contribution to the study of the 2ν5 (A1) rovibrational band of CH3Br near 2860 cm−1 , 1974 .

[18]  A. Smith,et al.  Nuclear and Molecular Constants from Microwave Spectra: Methyl Chloride and Methyl Bromide , 1947 .

[19]  J. W. Russell,et al.  Vibrational Intensities. XV. Error Treatment and Its Application to the Methyl Halides , 1966 .

[20]  D. Jennings,et al.  Simultaneous analysis of the 2ν2, 2ν5, and ν2 + ν5 vibration-rotation bands of CH3Br , 1978 .

[21]  H. W. Thompson,et al.  Vibration—rotation bands of methyl bromide , 1966 .

[22]  T. A. Wiggins,et al.  Rotation Vibration Bands of Some Symmetric Top Molecules Under High Resolution , 1953 .

[23]  W. H. Bennett,et al.  The Infra-Red Absorption Spectra of the Methyl Halides , 1928 .

[24]  J. W. Simmons,et al.  The Structure of Methyl Bromide from Microwave Spectra , 1950 .

[25]  J. Pesenti,et al.  Etude par transformation de Fourier de CH(3)Br et CH(3)Cl dans l'infrarouge très lointain. , 1974, Applied optics.

[26]  T. A. Wiggins,et al.  Some Bands of Methyl Bromide in the Near Infrared under High Resolution , 1953 .

[27]  J. Deroche,et al.  Rotational analysis of CH3Br v 6 perpendicular band through far infra-red laser lines , 1976 .

[28]  Roy E. Bruns,et al.  On the use of F and G sum rules as error indicators of experimental vibrational intensity data: The CHxD3−xBr molecules , 1978 .

[29]  C. Santhamma,et al.  Calculation of centrifugal distortion constants in some halogenated methanes of ZX3Y type , 1967 .

[30]  W. Flygare,et al.  The molecular Zeeman effect in CH3Cl, CH3Br and CH3I , 1970 .

[31]  S. Dyubko,et al.  Identification of generation lines of a submillimeter laser based on methyl bromide and acetonitrile molecules , 1978 .

[32]  W. Smit,et al.  On the use of F and G sum rules as error indicators of experimental vibrational intensity data: The CHxD3−xBr molecules , 1979 .

[33]  C. Betrencourt-Stirnemann,et al.  Infrared spectra of CH3Br: The 2ν2 band near 2600 cm−1 , 1973 .

[34]  D. F. Eggers,et al.  Fundamental Vibrations and Force Constants in the Partially Deuterated Methyl Halides , 1966 .

[35]  C. Lauro,et al.  l-resonance perturbations in overtone and combination vibrational systems of C3ν molecules , 1980 .

[36]  J. Duncan,et al.  The infra-red spectrum of 13CH3F and the general harmonic force field of methyl fluoride , 1972 .

[37]  J. Aldous,et al.  The calculation of force constants and normal co-ordinates—III: Constrained force fields for the methyl halides , 1963 .

[38]  A. Smith,et al.  Microwave Determination of the Molecular Structures and Nuclear Couplings of the Methyl Halides , 1948 .

[39]  E. Arimondo,et al.  Radiofrequency spectroscopy inside a laser cavity: Nuclear quadrupole resonance and A1-A2 splitting of CH3Br☆ , 1980 .

[40]  C. Amiot,et al.  Etude rovibrationnelle de la bande parallèle à structure perpendiculaire v 4 + v 6 de CH3 35Cl , 1974 .

[41]  K. Kawaguchi,et al.  CO2 and N2O laser Stark spectroscopy of the ν6 band of methyl bromide , 1978 .

[42]  J. L. Duncan,et al.  The equilibrium geometries of the methyl halides , 1970 .

[43]  I. Mills,et al.  l-resonance perturbations in infrared perpendicular bands , 1970 .

[44]  M. Jacox,et al.  Solid‐State Vibrational Spectra of the Methyl and Methyl‐d3 Halides , 1961 .

[45]  W. T. King,et al.  Normal coordinates in the methyl halides , 1957 .

[46]  J. Nakamura,et al.  Vibration-Rotation Spectra, the Coriolis Coupling Constants and the Intramolecular Force Field of Symmetric Top Molecules. I. The E-type Fundamental Bands of Methyl and Methyl-d3 Halides , 1965 .

[47]  T. Chang,et al.  Millimeter and submillimeter-wave laser action in symmetric top molecules optically pumped via perpendicular absorption bands , 1976 .

[48]  H. Dijkerman,et al.  Self-broadening and self-shifting of J=0 to 1 and J=1 to 2 rotational transitions of CH3Br and CH3I , 1977 .

[49]  D. Dows Infrared Spectra of Crystalline CD3Cl and CD3Br , 1960 .

[50]  R. W. Peterson,et al.  Analysis of ν4 of CD3Br , 1972 .

[51]  E. K. Plyler,et al.  The Low Frequency Fundamental Bands of Methyl Chloride, Methyl Bromide and Methyl Iodide , 1935 .

[52]  R. Azria,et al.  Interpretation du spectre de vibration-rotation de CH3Br vers 6000 cm−1 , 1968 .

[53]  M. Morillon-Chapey,et al.  Résonance anharmonique entre v1(A1) et (v 3 + v5 + v6) (A1 + A2) de CH3Br , 1974 .

[54]  L. Frenkel,et al.  Measurement of fourth order distortion constants in symmetric top molecules , 1971 .

[55]  K. Sarka The (Dk)0 values obtained from perpendicular fundamental vibration rotation bands , 1971 .

[56]  J. Lemaire,et al.  Double irradiation des molécules de bromure de méthyle et de protoxyde d'azote par rayonnements infrarouge et hertzien , 1971 .

[57]  S. Brodersen,et al.  Determination of A0 of CH3Br from its Raman spectrum , 1975 .

[58]  S. Brodersen,et al.  Determination of A0 from the ν4 Raman band of CD3Br , 1975 .

[59]  T. H. Edwards,et al.  Infrared Spectra of the Methyl Halides. II. Methyl Bromide near 4450 cm—1 , 1962 .

[60]  J. Duncan The centrifugal distortion constant DK of symmetric top molecules , 1976 .

[61]  J. Burie,et al.  Measurement of methyl bromide hyperfine structure with a beam-absorption spectrometer , 1976 .

[62]  R. E. Kagarise Vapour-liquid frequency shifts in some substituted methanes , 1963 .

[63]  A. M. Ronn,et al.  Passive Q-switching of A CO2-N2-He laser with CH3Br gas , 1970 .

[64]  H. Noether Infra‐Red Spectrum of Polyatomic Molecules XVI. Methyl‐d3‐Chloride and Methyl‐d3‐Bromide , 1942 .

[65]  J. W. Simmons,et al.  Microwave Determination of the Centrifugal Distortion Constants of the Methyl‐d3 Halides , 1966 .

[66]  B. P. Dailey,et al.  Variation in the Quadrupole Coupling Constant with Vibrational State in the Methyl Halides , 1954 .

[67]  W. Glass,et al.  Overtone and combination-tone spectra of methyl compounds. Part 1.—C3v molecules, observed regularities , 1963 .

[68]  G. Guelachvili,et al.  High resolution infrared spectrum of CH3Br: The ν4 band near 3100 cm−1 , 1974 .

[69]  J. Duncan,et al.  13C frequency shifts and the general harmonic force fields of methyl chloride, bromide and iodide , 1970 .

[70]  C. Hirose,et al.  Microwave spectra of methyl bromide and methyl bromide-d3. Coriolis resonance between the ν2 and ν5 states , 1967 .

[71]  J. Lemaire,et al.  Determination of the sign of an l-type doubling constant by infrared-microwave double resonance , 1976 .

[72]  R. J. Wagner,et al.  New submillimeter laser lines in optically pumped gas molecules , 1973 .

[73]  M. Gussoni,et al.  Infrared absorption intensities: Transferability of electro‐optical parameters , 1976 .

[74]  John R. Williams,et al.  Variation of Br quadrupole coupling with isotopic substitution in methyl bromide , 1979 .

[75]  J. Overend,et al.  Vibrational Anharmonicity in the Methyl Halides , 1968 .

[76]  G. Guelachvili,et al.  Perturbations study of the high-resolution spectrum of methyl bromide in the range of the fundamental band , 1975 .

[77]  S. Lawton,et al.  The identification of candidate transitions for optically pumped far infrared lasers: Methyl halides and D 2 O , 1978 .

[78]  J. Kauppinen,et al.  The Coriolis interaction between the fundamentals ν2 and ν5 of CD3Br , 1981 .

[79]  J. Lemaire,et al.  Study of rotational relaxation in CH3Br by infrared-microwave double resonance , 1976 .

[80]  B. de Barros Neto,et al.  F and G sum rules as error indicators of experimental vibrational intensity data: The CHxD3−xBr molecules , 1978 .

[81]  S. Dyubko,et al.  Rotational spectrum of methyl bromide in the vibrational ground state , 1978 .

[82]  A. Straten,et al.  Absolute infrared intensities of methyl bromide and all deuterium derivatives , 1977 .

[83]  M. D. Hemptinne A number of Raman spectra of isotope molecules , 1946 .

[84]  W. Anderson,et al.  Microwave Determination of the Centrifugal Distortion Constants of CH3Cl, CH3Br, CH3I, BrCN, and ICN , 1950 .

[85]  R. Bernstein,et al.  Substituted Methanes. XXIII. Infrared Spectral Data, Rotational Constants, Normal Coordinate Treatments, and Thermodynamic Properties for CD3Br and CH3Br , 1955 .

[86]  V. Corcoran,et al.  Identification of absorption lines in gases used to modulate the CO 2 laser , 1973 .

[87]  W. Holzer,et al.  Intensity in the raman effectII. Absolute intensities and depolarization ratios for halogen-substituted methanes in the gaseous state , 1968 .

[88]  J. Kauppinen,et al.  High-resolution infrared spectrum of the ν3 band of CD3Br , 1979 .

[89]  R. Shulman,et al.  Molecular Dipole Moments and Stark Effects. III. Dipole Moment Determinations , 1950 .

[90]  J. Burie,et al.  High resolution millimeter‐wave spectrum of methyl bromide. Spin–rotation and nuclear shielding tensors of bromine , 1977 .

[91]  N. Sheppard,et al.  Anharmonicity of CH3 deformation vibrations and Fermi resonance between the symmetrical CH3 stretching mode and overtones of CH3 deformation vibrations , 1972 .

[92]  D. C. Mckean CHD2 spectra and Fermi resonance effects in the CH3 and CD3 stretching regions. Symmetrical CH3 groups , 1973 .