The structure of molten FLiNaK

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Alvin M. Weinberg,et al.  Molten Fluorides as Power Reactor Fuels , 1957 .

[3]  S. I. Cohen,et al.  PHYSICAL PROPERTIES OF MOLTEN REACTOR FUELS AND COOLANTS , 1963 .

[4]  R. B. Briggs SUMMARY OF THE OBJECTIVES, THE DESIGN, AND A PROGRAM OF DEVELOPMENT OF MOLTEN-SALT BREEDER REACTORS. , 1967 .

[5]  R. E. Thoma CHEMICAL ASPECTS OF MSRE OPERATIONS. , 1971 .

[6]  R. C. Robertson,et al.  CONCEPTUAL DESIGN STUDY OF A SINGLE-FLUID MOLTEN-SALT BREEDER REACTOR. , 1971 .

[7]  L. G. Alexander,et al.  DESIGN STUDIES OF A MOLTEN-SALT REACTOR DEMONSTRATION PLANT. , 1972 .

[8]  L. E. McNeese,et al.  Molten-salt reactor program. Semiannual progress report for period ending August 31, 1974 , 1975 .

[9]  L. E. McNeese Molten-salt reactor program. Semiannual progress report for period ending February 29, 1976 , 1976 .

[10]  J. Enderby,et al.  Structural properties of ionic liquids , 1980 .

[11]  S. Biggin,et al.  Comments on the structure of molten salts , 1982 .

[12]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[13]  M. Tosi,et al.  Structure and dynamics of molten salts , 1986 .

[14]  K. Igarashi,et al.  X-ray diffraction study of molten eutectic LiF–NaF–KF mixture , 1988 .

[15]  M. Klein,et al.  Constant pressure molecular dynamics algorithms , 1994 .

[16]  Teter,et al.  Separable dual-space Gaussian pseudopotentials. , 1996, Physical review. B, Condensed matter.

[17]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[18]  Simon J. L. Billinge,et al.  Underneath the Bragg Peaks: Structural Analysis of Complex Materials , 2003 .

[19]  M. Chrenková,et al.  Density and viscosity of the (LiFNaFKF)eutKBD4B2O3 melts , 2003 .

[20]  Pavel Soucek,et al.  Development of Electrochemical Separation Methods in Molten LiF-NaF-KF for the Molten Salt Reactor Fuel Cycle , 2005 .

[21]  Michele Parrinello,et al.  Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach , 2005, Comput. Phys. Commun..

[22]  A. Barnes,et al.  Neutron and x-ray diffraction studies of liquids and glasses , 2005 .

[23]  R. Brissot,et al.  The thorium molten salt reactor : Moving on from the MSBR , 2005, nucl-ex/0506004.

[24]  S J L Billinge,et al.  PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[25]  M. Allibert,et al.  Reactor physic and reprocessing scheme for innovative molten salt reactor system , 2009 .

[26]  R. Brissot,et al.  Possible Configurations for the Thorium Molten Salt Reactor and Advantages of the Fast Nonmoderated Version , 2009 .

[27]  K. K. Chipley,et al.  The Nanoscale Ordered MAterials Diffractometer NOMAD at the Spallation Neutron Source SNS , 2012 .

[28]  M. Kormilitsyn,et al.  Molten-salt reactors: new possibilities, problems and solutions , 2012 .

[29]  D. Morgan,et al.  First-principles molecular dynamics modeling of the molten fluoride salt with Cr solute , 2014 .

[30]  Joost VandeVondele,et al.  cp2k: atomistic simulations of condensed matter systems , 2014 .

[31]  Peng Zhang,et al.  Determination of thermal physical properties of alkali fluoride/carbonate eutectic molten salt , 2017 .

[32]  130 , 2018, The Devil's Fork.

[33]  H. Haubeck COMP , 2019, Springer Reference Medizin.

[34]  Adv , 2019, International Journal of Pediatrics and Adolescent Medicine.

[35]  Elif İnce Atom , 2019, Fen Öğretiminde Kavram Yanılgıları Tespiti ve Giderilmesi.

[36]  友紀子 中川 SoC , 2021, Journal of Japan Society for Fuzzy Theory and Intelligent Informatics.