Approximate Bayesian Computation in hydrologic modeling: equifinality of formal and informal approaches

1) Please do not claim that ABC is “introduced” in this paper. Your recently accepted paper in WRR “introduced” ABC for hydrological applications (Vrugt and Sadegh, 2013). It is fine to have some duplication (in fact, even „needed‟ to understand the paper by itself), but I would be more explicit about the fact that the ABC method is already introduced. This paper for HESS has the nice feature of connecting ABC with GLUE. Yet, that is only mentioned at the bottom of the abstract and end of introduction. I would suggest to bring the connection with GLUE front and center in the HESS-paper to avoid a vague feeling that this is a repeat of the WRR-paper (which is not the case, I checked). Also maybe add on l.161 that this paper is also a follow up of Vrugt and Sadeg 2013, rather than just Vrugt et al (2008c).

[1]  Hubert H. G. Savenije,et al.  A comparison of alternative multiobjective calibration strategies for hydrological modeling , 2007 .

[2]  Peter C Young,et al.  Advances in real–time flood forecasting , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[3]  Arthur Kosowsky,et al.  Fast cosmological parameter estimation from microwave background temperature and polarization power spectra , 2004 .

[4]  Cajo J. F. ter Braak,et al.  Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation , 2008 .

[5]  Lars-Christer Lundin,et al.  Equifinality and sensitivity in freezing and thawing simulations of laboratory and in situ data , 2006 .

[6]  D. Kavetski,et al.  Towards a Bayesian total error analysis of conceptual rainfall-runoff models: Characterising model error using storm-dependent parameters , 2006 .

[7]  B. Troutman Errors and Parameter Estimation in Precipitation‐Runoff Modeling: 1. Theory , 1985 .

[8]  Paul Marjoram,et al.  Statistical Applications in Genetics and Molecular Biology Approximately Sufficient Statistics and Bayesian Computation , 2011 .

[9]  Kuolin Hsu,et al.  Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter , 2005 .

[10]  P. Mantovan,et al.  Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology , 2006 .

[11]  Keith Beven,et al.  A manifesto for the equifinality thesis , 2006 .

[12]  G. Kuczera Improved parameter inference in catchment models: 2. Combining different kinds of hydrologic data and testing their compatibility , 1983 .

[13]  A. Brath,et al.  A stochastic approach for assessing the uncertainty of rainfall‐runoff simulations , 2004 .

[14]  Jasper A. Vrugt,et al.  High‐dimensional posterior exploration of hydrologic models using multiple‐try DREAM(ZS) and high‐performance computing , 2012 .

[15]  J. Kaipio,et al.  Compensation of errors due to discretization, domain truncation and unknown contact impedances in electrical impedance tomography , 2009 .

[16]  K. Beven,et al.  Comment on “Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling?” by Jasper A. Vrugt, Cajo J. F. ter Braak, Hoshin V. Gupta and Bruce A. Robinson , 2009 .

[17]  George Kuczera,et al.  Calibration of conceptual hydrological models revisited: 1. Overcoming numerical artefacts , 2006 .

[18]  Bruce A. Robinson,et al.  Self-Adaptive Multimethod Search for Global Optimization in Real-Parameter Spaces , 2009, IEEE Transactions on Evolutionary Computation.

[19]  Mark M. Tanaka,et al.  Sequential Monte Carlo without likelihoods , 2007, Proceedings of the National Academy of Sciences.

[20]  J. Nash,et al.  River flow forecasting through conceptual models part I — A discussion of principles☆ , 1970 .

[21]  J. Stedinger,et al.  Appraisal of the generalized likelihood uncertainty estimation (GLUE) method , 2008 .

[22]  R. Ibbitt,et al.  Effects of random data errors on the parameter values for a conceptual model , 1972 .

[23]  Soroosh Sorooshian,et al.  Toward improved identifiability of hydrologic model parameters: The information content of experimental data , 2002 .

[24]  D. Balding,et al.  Approximate Bayesian computation in population genetics. , 2002, Genetics.

[25]  G. Kuczera Improved parameter inference in catchment models: 1. Evaluating parameter uncertainty , 1983 .

[26]  Arnaud Doucet,et al.  An adaptive sequential Monte Carlo method for approximate Bayesian computation , 2011, Statistics and Computing.

[27]  B. Bates,et al.  A Markov Chain Monte Carlo Scheme for parameter estimation and inference in conceptual rainfall‐runoff modeling , 2001 .

[28]  Eero Saksman,et al.  Adaptive proposal distribution for random walkMetropolis , 1999 .

[29]  Peter Reichert,et al.  Analyzing input and structural uncertainty of nonlinear dynamic models with stochastic, time‐dependent parameters , 2009 .

[30]  T. Gasser,et al.  Nonparametric estimation of residual variance revisited , 1993 .

[31]  Peter C. Young,et al.  Hypothetico‐inductive data‐based mechanistic modeling of hydrological systems , 2013 .

[32]  Paul D. Bates,et al.  Assessing the uncertainty in distributed model predictions using observed binary pattern information within GLUE , 2002 .

[33]  Dimitri Solomatine,et al.  A novel method to estimate model uncertainty using machine learning techniques , 2009 .

[34]  V. Pauwels A multistart weight‐adaptive recursive parameter estimation method , 2008 .

[35]  Lucy Marshall,et al.  Towards dynamic catchment modelling: a Bayesian hierarchical mixtures of experts framework , 2007 .

[36]  Soroosh Sorooshian,et al.  Comment on: Bayesian recursive parameter estimation for hydrologic models. Authors' reply , 2003 .

[37]  Tyler Smith,et al.  Development of a formal likelihood function for improved Bayesian inference of ephemeral catchments , 2010 .

[38]  George Kuczera,et al.  Semidistributed hydrological modeling: A “saturation path” perspective on TOPMODEL and VIC , 2003 .

[39]  John R. Williams,et al.  SENSITIVITY AND UNCERTAINTY ANALYSES OF CROP YIELDS AND SOIL ORGANIC CARBON SIMULATED WITH EPIC , 2005 .

[40]  D. Higdon,et al.  Accelerating Markov Chain Monte Carlo Simulation by Differential Evolution with Self-Adaptive Randomized Subspace Sampling , 2009 .

[41]  J. Seibert Multi-criteria calibration of a conceptual runoff model using a genetic algorithm , 2000 .

[42]  Jasper A Vrugt,et al.  Improved evolutionary optimization from genetically adaptive multimethod search , 2007, Proceedings of the National Academy of Sciences.

[43]  Johan Alexander Huisman,et al.  Bayesian model averaging using particle filtering and Gaussian mixture modeling: Theory, concepts, and simulation experiments , 2012 .

[44]  Brandon M. Turner,et al.  Journal of Mathematical Psychology a Tutorial on Approximate Bayesian Computation , 2022 .

[45]  Q. J. Wang THE GENETIC ALGORITHM AND ITS APPLICAYTION TO CALIBRATING CONCEPUTAL RAINFALL-RUNOFF MODELS , 1991 .

[46]  S. Sorooshian,et al.  Automatic calibration of conceptual rainfall-runoff models: The question of parameter observability and uniqueness , 1983 .

[47]  J. Vrugt,et al.  Corruption of accuracy and efficiency of Markov chain Monte Carlo simulation by inaccurate numerical implementation of conceptual hydrologic models , 2010 .

[48]  S. Sorooshian,et al.  Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data , 1996 .

[49]  Bryan A. Tolson,et al.  Dynamically dimensioned search algorithm for computationally efficient watershed model calibration , 2007 .

[50]  Henrik Madsen,et al.  Including prior information in the estimation of effective soil parameters in unsaturated zone modelling , 2004 .

[51]  Soroosh Sorooshian,et al.  Dual state-parameter estimation of hydrological models using ensemble Kalman filter , 2005 .

[52]  S. Sorooshian,et al.  Stochastic parameter estimation procedures for hydrologie rainfall‐runoff models: Correlated and heteroscedastic error cases , 1980 .

[53]  Christophe Andrieu,et al.  Model criticism based on likelihood-free inference, with an application to protein network evolution , 2009, Proceedings of the National Academy of Sciences.

[54]  K. Beven,et al.  Bayesian Estimation of Uncertainty in Runoff Prediction and the Value of Data: An Application of the GLUE Approach , 1996 .

[55]  Keith Beven,et al.  On the sensitivity of soil-vegetation-atmosphere transfer (SVAT) schemes: equifinality and the problem of robust calibration , 1997 .

[56]  Soroosh Sorooshian,et al.  Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information , 1998 .

[57]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[58]  Keith Beven,et al.  So just why would a modeller choose to be incoherent , 2008 .

[59]  P. Hall,et al.  Asymptotically optimal difference-based estimation of variance in nonparametric regression , 1990 .

[60]  Qingyun Duan,et al.  An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction , 2006 .

[61]  C. Diks,et al.  Improved treatment of uncertainty in hydrologic modeling , 2004 .

[62]  George Kuczera,et al.  Toward a reliable decomposition of predictive uncertainty in hydrological modeling: Characterizing rainfall errors using conditional simulation , 2011 .

[63]  George Kuczera,et al.  Bayesian analysis of input uncertainty in hydrological modeling: 2. Application , 2006 .

[64]  C. Robert,et al.  ABC likelihood-free methods for model choice in Gibbs random fields , 2008, 0807.2767.

[65]  George Kuczera,et al.  On the relationship between the reliability of parameter estimates and hydrologic time series data used in calibration , 1982 .

[66]  Neil McIntyre,et al.  Towards reduced uncertainty in conceptual rainfall‐runoff modelling: dynamic identifiability analysis , 2003 .

[67]  Alberto Montanari,et al.  Estimating the uncertainty of hydrological forecasts: A statistical approach , 2008 .

[68]  J. Vrugt,et al.  Toward diagnostic model calibration and evaluation: Approximate Bayesian computation , 2013 .

[69]  Bruce A. Robinson,et al.  Response to comment by Keith Beven on “Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling?” , 2009 .

[70]  Keith Beven,et al.  Detection of structural inadequacy in process‐based hydrological models: A particle‐filtering approach , 2008 .

[71]  Soroosh Sorooshian,et al.  Multi-objective global optimization for hydrologic models , 1998 .

[72]  Jasper A. Vrugt,et al.  Hydrologic data assimilation using particle Markov chain Monte Carlo simulation: Theory, concepts and applications (online first) , 2012 .

[73]  Emmanouil N. Anagnostou,et al.  A Statistical Approach to Ground Radar-Rainfall Estimation , 2005 .

[74]  S. Sorooshian,et al.  Evaluation of Maximum Likelihood Parameter estimation techniques for conceptual rainfall‐runoff models: Influence of calibration data variability and length on model credibility , 1983 .

[75]  Keith Beven,et al.  Prophecy, reality and uncertainty in distributed hydrological modelling , 1993 .

[76]  M. Clark,et al.  Snow Data Assimilation via an Ensemble Kalman Filter , 2006 .

[77]  Cajo J. F. ter Braak,et al.  Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling? , 2009 .

[78]  J. Vrugt,et al.  A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non‐Gaussian errors , 2010 .

[79]  Hamid Moradkhani,et al.  Examining the effectiveness and robustness of sequential data assimilation methods for quantification of uncertainty in hydrologic forecasting , 2012 .

[80]  M. Clark,et al.  Probabilistic Quantitative Precipitation Estimation in Complex Terrain , 2005 .

[81]  H. Gupta,et al.  Correcting the mathematical structure of a hydrological model via Bayesian data assimilation , 2011 .

[82]  Steen Christensen A synthetic groundwater modelling study of the accuracy of GLUE uncertainty intervals , 2002 .

[83]  Misgana K. Muleta,et al.  Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model , 2005 .

[84]  Knut-Andreas Lie,et al.  Adaptive Multiscale Streamline Simulation and Inversion for High-Resolution Geomodels , 2008 .

[85]  David J. Nott,et al.  Generalized likelihood uncertainty estimation (GLUE) and approximate Bayesian computation: What's the connection? , 2012 .

[86]  Asaad Y. Shamseldin,et al.  Development of a possibilistic method for the evaluation of predictive uncertainty in rainfall‐runoff modeling , 2007 .

[87]  L. Feyen,et al.  Assessing parameter, precipitation, and predictive uncertainty in a distributed hydrological model using sequential data assimilation with the particle filter , 2009 .

[88]  Keith Beven,et al.  Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology , 2001 .