Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition

[1]  M. Doherty,et al.  Solution to Electric Field Screening in Diamond Quantum Electrometers , 2019, 1912.09619.

[2]  N. T. Son,et al.  Electrical and optical control of single spins integrated in scalable semiconductor devices , 2019, Science.

[3]  F. Jelezko,et al.  Photoelectrical imaging and coherent spin-state readout of single nitrogen-vacancy centers in diamond , 2019, Science.

[4]  A. Morpurgo,et al.  Probing magnetism in 2D materials at the nanoscale with single-spin microscopy , 2019, Science.

[5]  J. Repp,et al.  Mapping orbital changes upon electron transfer with tunnelling microscopy on insulators , 2019, Nature.

[6]  A. Zimmermann,et al.  Robust and accurate electric field sensing with solid state spin ensembles. , 2019, Nano letters.

[7]  F. Giessibl The qPlus sensor, a powerful core for the atomic force microscope. , 2019, The Review of scientific instruments.

[8]  T. Shibauchi,et al.  Measuring magnetic field texture in correlated electron systems under extreme conditions , 2018, Science.

[9]  R. Jeanloz,et al.  Imaging stress and magnetism at high pressures using a nanoscale quantum sensor , 2018, Science.

[10]  D. Bluvstein,et al.  Identifying and Mitigating Charge Instabilities in Shallow Diamond Nitrogen-Vacancy Centers. , 2018, Physical review letters.

[11]  L. Hollenberg,et al.  Spatial mapping of band bending in semiconductor devices using in situ quantum sensors , 2018, Nature Electronics.

[12]  Denis Sukachev,et al.  Photon-mediated interactions between quantum emitters in a diamond nanocavity , 2019, LASE.

[13]  L. Hollenberg,et al.  Evidence for Primal sp2 Defects at the Diamond Surface: Candidates for Electron Trapping and Noise Sources , 2018, Advanced Materials Interfaces.

[14]  F. Buttner,et al.  Magnetostatic twists in room-temperature skyrmions explored by nitrogen-vacancy center spin texture reconstruction , 2016, Nature Communications.

[15]  D. Müller,et al.  Imaging in Biologically-Relevant Environments with AFM Using Stiff qPlus Sensors , 2018, Scientific Reports.

[16]  Joo-Von Kim,et al.  Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer , 2017, Nature.

[17]  J. Wrachtrup,et al.  Nanoscale nuclear magnetic resonance with chemical resolution , 2017, Science.

[18]  Jan Meijer,et al.  Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor , 2017, Science.

[19]  C. Degen,et al.  Quantum sensing with arbitrary frequency resolution , 2017, Science.

[20]  R. Warburton,et al.  Electric-Field Sensing with a Scanning Fiber-Coupled Quantum Dot , 2017, 1705.03358.

[21]  H. Fedder,et al.  Protecting a Diamond Quantum Memory by Charge State Control. , 2017, Nano letters.

[22]  J. Wrachtrup,et al.  Tailoring spin defects in diamond by lattice charging , 2017, Nature Communications.

[23]  Amit Finkler,et al.  Nuclear quantum-assisted magnetometer. , 2016, The Review of scientific instruments.

[24]  E Neu,et al.  Quantitative nanoscale vortex imaging using a cryogenic quantum magnetometer. , 2015, Nature nanotechnology.

[25]  Ania C. Bleszynski Jayich,et al.  Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor. , 2015, Nature nanotechnology.

[26]  Hongbin Sun,et al.  Single-protein spin resonance spectroscopy under ambient conditions , 2015, Science.

[27]  M. Lukin,et al.  Efficient readout of a single spin state in diamond via spin-to-charge conversion. , 2014, Physical review letters.

[28]  M. Lukin,et al.  Indistinguishable photons from separated silicon-vacancy centers in diamond. , 2014, Physical review letters.

[29]  M. Stutzmann,et al.  Addressing single nitrogen-vacancy centers in diamond with transparent in-plane gate structures. , 2014, Nano letters.

[30]  Bálint Aradi,et al.  Calculation ofthe transitions and migration of nitrogen and vacancy related defects,with implications on the formation of NV centers in bulk diamond , 2013, 1311.6598.

[31]  A. Yacoby,et al.  Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins. , 2014, Nature nanotechnology.

[32]  R. Berndt,et al.  Tuning the electron transport at single donors in zinc oxide with a scanning tunnelling microscope , 2014, Nature Communications.

[33]  Y. Wang,et al.  Quantum error correction in a solid-state hybrid spin register , 2013, Nature.

[34]  P. Maurer,et al.  Nanometre-scale thermometry in a living cell , 2013, Nature.

[35]  D. Suter,et al.  High-precision nanoscale temperature sensing using single defects in diamond. , 2013, Nano letters.

[36]  M. Markham,et al.  Heralded entanglement between solid-state qubits separated by three metres , 2012, Nature.

[37]  F. Jelezko,et al.  Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection , 2012, 1209.0268.

[38]  Bob B. Buckley,et al.  Room temperature coherent control of defect spin qubits in silicon carbide , 2011, Nature.

[39]  A. Yacoby,et al.  A robust, scanning quantum system for nanoscale sensing and imaging , 2011, 1108.4437.

[40]  J. Roch,et al.  Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity , 2011, 1108.0178.

[41]  L. Hollenberg,et al.  Sensing electric fields using single diamond spins , 2011, 1103.3432.

[42]  M. Lukin,et al.  Quantum control of proximal spins using nanoscale magnetic resonance imaging , 2011, 1103.0546.

[43]  M. Stutzmann,et al.  Chemical control of the charge state of nitrogen-vacancy centers in diamond , 2010, 1011.5109.

[44]  Andrew C. Kummel,et al.  Kelvin probe force microscopy and its application , 2011 .

[45]  J. Gupta,et al.  Tunable Field Control Over the Binding Energy of Single Dopants by a Charged Vacancy in GaAs , 2010, Science.

[46]  Peter Liljeroth,et al.  Measuring the Charge State of an Adatom with Noncontact Atomic Force Microscopy , 2009, Science.

[47]  D. Fisher,et al.  Hyperfine interaction in the ground state of the negatively charged nitrogen vacancy center in diamond , 2009 .

[48]  Alfred Leitenstorfer,et al.  Nanoscale imaging magnetometry with diamond spins under ambient conditions , 2008, Nature.

[49]  S. Loth,et al.  Controlled charge switching on a single donor with a scanning tunneling microscope. , 2008, Physical review letters.

[50]  Jacob M. Taylor,et al.  High-sensitivity diamond magnetometer with nanoscale resolution , 2008, 0805.1367.

[51]  K. Klitzing,et al.  Observation of electron–hole puddles in graphene using a scanning single-electron transistor , 2007, 0705.2180.

[52]  Jascha Repp,et al.  Controlling the Charge State of Individual Gold Adatoms , 2004, Science.

[53]  F. Jelezko,et al.  Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. , 2004, Physical review letters.

[54]  J. C. Davis,et al.  3He refrigerator based very low temperature scanning tunneling microscope , 1999 .

[55]  West,et al.  Scanning Single-Electron Transistor Microscopy: Imaging Individual Charges , 1997, Science.

[56]  Albert K. Henning,et al.  Two‐dimensional surface dopant profiling in silicon using scanning Kelvin probe microscopy , 1995 .

[57]  H. Kumar Wickramasinghe,et al.  High‐resolution capacitance measurement and potentiometry by force microscopy , 1988 .