Every positive integer is the order of an ordinary abelian variety over ${\mathbb F}_2$

[1]  Bjorn Poonen,et al.  Abelian varieties of prescribed order over finite fields , 2021 .

[2]  S. Marseglia,et al.  Every finite abelian group is the group of rational points of an ordinary abelian variety over $\mathbb{F}_2$, $\mathbb{F}_3$ and $\mathbb{F}_5$ , 2021, 2105.08125.

[3]  Estimates for the number of rational points on simple abelian varieties over finite fields , 2019, 1906.02264.

[4]  DoYong Kwon Reciprocal polynomials with all zeros on the unit circle , 2011 .

[5]  P. Lakatos,et al.  Polynomials with all zeros on the unit circle , 2009 .

[6]  P. Lakatos,et al.  Circular interlacing with reciprocal polynomials , 2007 .

[7]  Andrzej Schinzel,et al.  Self-Inversive Polynomials with All Zeros on the Unit Circle , 2005 .

[8]  Marc Joye,et al.  Compact Encoding of Non-adjacent Forms with Applications to Elliptic Curve Cryptography , 2001, Public Key Cryptography.

[9]  Everett W. Howe,et al.  Real Polynomials with All Roots on the Unit Circle and Abelian Varieties over Finite Fields , 1998, Journal of Number Theory.

[10]  Weiyu Chen On the Polynomials with All Their Zeros on the Unit Circle , 1995 .

[11]  Satyabrata Pal,et al.  Abelian varieties and a conjecture of R.M. Robinson. , 1977 .

[12]  John Tate,et al.  Classes d'isogénie des variétés abéliennes sur un corps fini (d'après T. Honda) , 1969 .

[13]  George W. Reitwiesner,et al.  Binary Arithmetic , 1960, Adv. Comput..

[14]  C. Fontes-Ribeiro,et al.  Corrigendum , 1955, International and Comparative Law Quarterly.