Every positive integer is the order of an ordinary abelian variety over ${\mathbb F}_2$
暂无分享,去创建一个
[1] Bjorn Poonen,et al. Abelian varieties of prescribed order over finite fields , 2021 .
[2] S. Marseglia,et al. Every finite abelian group is the group of rational points of an ordinary abelian variety over $\mathbb{F}_2$, $\mathbb{F}_3$ and $\mathbb{F}_5$ , 2021, 2105.08125.
[3] Estimates for the number of rational points on simple abelian varieties over finite fields , 2019, 1906.02264.
[4] DoYong Kwon. Reciprocal polynomials with all zeros on the unit circle , 2011 .
[5] P. Lakatos,et al. Polynomials with all zeros on the unit circle , 2009 .
[6] P. Lakatos,et al. Circular interlacing with reciprocal polynomials , 2007 .
[7] Andrzej Schinzel,et al. Self-Inversive Polynomials with All Zeros on the Unit Circle , 2005 .
[8] Marc Joye,et al. Compact Encoding of Non-adjacent Forms with Applications to Elliptic Curve Cryptography , 2001, Public Key Cryptography.
[9] Everett W. Howe,et al. Real Polynomials with All Roots on the Unit Circle and Abelian Varieties over Finite Fields , 1998, Journal of Number Theory.
[10] Weiyu Chen. On the Polynomials with All Their Zeros on the Unit Circle , 1995 .
[11] Satyabrata Pal,et al. Abelian varieties and a conjecture of R.M. Robinson. , 1977 .
[12] John Tate,et al. Classes d'isogénie des variétés abéliennes sur un corps fini (d'après T. Honda) , 1969 .
[13] George W. Reitwiesner,et al. Binary Arithmetic , 1960, Adv. Comput..
[14] C. Fontes-Ribeiro,et al. Corrigendum , 1955, International and Comparative Law Quarterly.