Directed Homology Theories and Eilenberg-Steenrod Axioms

In this paper, we define and study a homology theory, that we call “natural homology”, which associates a natural system of abelian groups to every space in a large class of directed spaces and precubical sets. We show that this homology theory enjoys many important properties, as an invariant for directed homotopy. Among its properties, we show that subdivided precubical sets have the same homology type as the original ones ; similarly, the natural homology of a precubical set is of the same type as the natural homology of its geometric realization. By same type we mean equivalent up to some form of bisimulation, that we define using the notion of open map. Last but not least, natural homology, for the class of spaces we consider, exhibits very important properties such as Hurewicz theorems, and most of Eilenberg-Steenrod axioms, in particular the dimension, homotopy, additivity and exactness axioms. This last axiom is studied in a general framework of (generalized) exact sequences.

[1]  Edsger W. Dijkstra,et al.  Cooperating sequential processes , 2002 .

[2]  M. Raussen Trace spaces in a pre-cubical complex , 2009 .

[3]  Günther Wirsching,et al.  Cohomology of small categories , 1985 .

[4]  Eric Goubault,et al.  Homology of Higher Dimensional Automata , 1992, CONCUR.

[5]  Eric Goubault,et al.  Detecting Deadlocks in Concurrent Systems , 1996, CONCUR.

[6]  Vaughan R. Pratt,et al.  Modeling concurrency with geometry , 1991, POPL '91.

[7]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[8]  Sanjeevi Krishnan,et al.  A Convenient Category of Locally Preordered Spaces , 2007, Appl. Categorical Struct..

[9]  Dominic R. Verity,et al.  ∞-Categories for the Working Mathematician , 2018 .

[10]  M. Raussen Simplicial models of trace spaces , 2010 .

[11]  M. Grandis Directed Algebraic Topology: Models of Non-Reversible Worlds , 2009 .

[12]  A. C. Ehresmann,et al.  CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES , 2008 .

[13]  M. Grandis Inequilogical spaces, directed homology and noncommutative geometry , 2004 .

[14]  Afra Zomorodian,et al.  Computing Persistent Homology , 2004, SCG '04.

[15]  Alexander K. Petrenko,et al.  Electronic Notes in Theoretical Computer Science , 2009 .

[16]  Ulrich Fahrenberg,et al.  Directed Homology , 2004, CMCIM/GETCO@CONCUR.

[17]  Eric Goubault,et al.  Dihomotopy as a Tool in State Space Analysis , 2002, LATIN.

[18]  Lisbeth Fajstrup,et al.  Dipaths and dihomotopies in a cubical complex , 2005, Adv. Appl. Math..

[19]  Eric Goubault,et al.  Directed Algebraic Topology and Concurrency , 2016, Cambridge International Law Journal.

[20]  Arie Shoshani,et al.  System Deadlocks , 1971, CSUR.

[21]  Samuel Mimram,et al.  A Homotopical Completion Procedure with Applications to Coherence of Monoids , 2013, RTA.

[22]  M. Raussen Simplicial models for trace spaces II: General higher dimensional automata , 2012 .

[23]  Maurice Herlihy,et al.  Distributed Computing Through Combinatorial Topology , 2013 .

[24]  F. Borceux Categories and structures , 1994 .

[25]  Marco Grandis,et al.  Directed homotopy theory, I , 2003 .

[26]  Glynn Winskel,et al.  Bisimulation from Open Maps , 1994, Inf. Comput..

[27]  Afra Zomorodian,et al.  Computing Persistent Homology , 2005, Discret. Comput. Geom..

[28]  Fotini Markopoulou The Internal Description of a Causal Set:¶What the Universe Looks Like from the Inside , 2000 .

[29]  Philippe Malbos Rewriting Systems and Hochschild-Mitchell Homology , 2003, Electron. Notes Theor. Comput. Sci..

[30]  Thomas Kahl The homology graph of a higher dimensional automaton , 2013, ArXiv.

[31]  Sanjeevi Krishnan,et al.  Flow-Cut Dualities for Sheaves on Graphs , 2014, 1409.6712.

[32]  Edsger Wybe Dijkstra,et al.  Cooperating Sequential Processes, Technical Report EWD-123 , 1965 .

[33]  Eric Goubault,et al.  Components of the Fundamental Category II , 2007, Appl. Categorical Struct..

[34]  R. J. van Glabbeek On the Expressiveness of Higher Dimensional Automata: (Extended Abstract) , 2004, EXPRESS.

[35]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.

[36]  Eric Goubault,et al.  Rigorous Evidence of Freedom from Concurrency Faults in Industrial Control Software , 2011, SAFECOMP.

[37]  Sven Strauss,et al.  Theory of categories , 1965 .

[38]  Eric Goubault,et al.  A Practical Application of Geometric Semantics to Static Analysis of Concurrent Programs , 2005, CONCUR.

[39]  Jean Goubault-Larrecq,et al.  Natural Homology , 2015, ICALP.

[40]  B. Mitchell,et al.  Rings with several objects , 1972 .

[41]  R. Gisser Extended abstract , 2011 .

[42]  Eric Goubault,et al.  SOME GEOMETRIC PERSPECTIVES IN CONCURRENCY THEORY , 2003 .

[43]  Michael Barr,et al.  GENERALIZED CONGRUENCES — EPIMORPHISMS IN Cat , 1999 .

[44]  É. Goubault Geometrie du parallelisme , 1995 .

[45]  Eric Goubault,et al.  Trace Spaces: An Efficient New Technique for State-Space Reduction , 2012, ESOP.

[46]  Eric Goubault,et al.  Algebraic topology and concurrency , 2006, Theor. Comput. Sci..