Security primitives and protocols for ultra low power sensor systems

Security requirements in sensor systems include resiliency against physical and side-channel attacks, low energy for communication, storage, and computation, and the ability to realize a variety of public-key protocols. Furthermore, primitives and protocols that enable trusted remote operation in terms of data, time, and location are essential to guarantee secure sensing. By integrating physically unclonable functions (PUFs) directly into sensor hardware and using device aging to securely match groups of sensors, we enable a variety of ultra low power security protocols for trusted remote sensing, including authentication and public key communication.

[1]  Bruce Schneier,et al.  Applied cryptography : protocols, algorithms, and source codein C , 1996 .

[2]  Miodrag Potkonjak,et al.  Worst and best-case coverage in sensor networks , 2005, IEEE Transactions on Mobile Computing.

[3]  Miodrag Potkonjak,et al.  Gate-level characterization: Foundations and hardware security applications , 2010, Design Automation Conference.

[4]  Miodrag Potkonjak,et al.  Trusted sensors and remote sensing , 2010, 2010 IEEE Sensors.

[5]  Frank Stajano,et al.  The Resurrecting Duckling , 1999 .

[6]  B. Cline,et al.  Analysis and modeling of CD variation for statistical static timing , 2006, ICCAD '06.

[7]  Farinaz Koushanfar,et al.  Post-silicon timing characterization by compressed sensing , 2008, ICCAD 2008.

[8]  Miodrag Potkonjak,et al.  Trusted Integrated Circuits: A Nondestructive Hidden Characteristics Extraction Approach , 2008, Information Hiding.

[9]  Miodrag Potkonjak,et al.  Lightweight secure PUFs , 2008, ICCAD 2008.

[10]  Miodrag Potkonjak,et al.  Hardware Trojan horse detection using gate-level characterization , 2009, 2009 46th ACM/IEEE Design Automation Conference.

[11]  Miodrag Potkonjak,et al.  Gateway placement for latency and energy efficient data aggregation [wireless sensor networks] , 2004, 29th Annual IEEE International Conference on Local Computer Networks.

[12]  Miodrag Potkonjak,et al.  Search in sensor networks: Challenges, techniques, and applications , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[13]  Miodrag Potkonjak,et al.  Localized algorithms in wireless ad-hoc networks: location discovery and sensor exposure , 2001, MobiHoc '01.

[14]  Stephen A. Benton,et al.  Physical one-way functions , 2001 .

[15]  Ulrich Rührmair,et al.  SIMPL Systems, or: Can We Design Cryptographic Hardware without Secret Key Information? , 2011, SOFSEM.

[16]  Jan M. Rabaey,et al.  Ultralow-Power Design in Near-Threshold Region , 2010, Proceedings of the IEEE.

[17]  Miodrag Potkonjak,et al.  Minimal and maximal exposure path algorithms for wireless embedded sensor networks , 2003, SenSys '03.

[18]  Miodrag Potkonjak,et al.  Wireless Sensor Networks , 2003 .

[19]  Miodrag Potkonjak,et al.  Model-based calibration for sensor networks , 2003, Proceedings of IEEE Sensors 2003 (IEEE Cat. No.03CH37498).

[20]  Miodrag Potkonjak,et al.  Hardware-Based Public-Key Cryptography with Public Physically Unclonable Functions , 2009, Information Hiding.

[21]  Ross J. Anderson Security engineering - a guide to building dependable distributed systems (2. ed.) , 2001 .

[22]  Srinivas Devadas,et al.  Silicon physical random functions , 2002, CCS '02.

[23]  Miodrag Potkonjak,et al.  SVD-Based Ghost Circuitry Detection , 2009, Information Hiding.

[24]  Miodrag Potkonjak,et al.  Fault Tolerance in Wireless Ad-Hoc Sensor Networks , 2007 .

[25]  Bernard P. Zajac Applied cryptography: Protocols, algorithms, and source code in C , 1994 .

[26]  Miodrag Potkonjak,et al.  Techniques for Design and Implementation of Secure Reconfigurable PUFs , 2009, TRETS.

[27]  Miodrag Potkonjak,et al.  Coverage problems in wireless ad-hoc sensor networks , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[28]  Markus G. Kuhn,et al.  Tamper resistance: a cautionary note , 1996 .

[29]  Douglas R. Stinson,et al.  Cryptography: Theory and Practice , 1995 .

[30]  A. Asenov Random dopant induced threshold voltage lowering and fluctuations in sub-0.1 /spl mu/m MOSFET's: A 3-D "atomistic" simulation study , 1998 .

[31]  Miodrag Potkonjak,et al.  Sleeping Coordination for Comprehensive Sensing Using Isotonic Regression and Domatic Partitions , 2006, Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications.

[32]  J. Torrellas,et al.  VARIUS: A Model of Process Variation and Resulting Timing Errors for Microarchitects , 2008, IEEE Transactions on Semiconductor Manufacturing.

[33]  Miodrag Potkonjak,et al.  Matched public PUF: Ultra low energy security platform , 2011, IEEE/ACM International Symposium on Low Power Electronics and Design.

[34]  Miodrag Potkonjak,et al.  Differential public physically unclonable functions: Architecture and applications , 2011, 2011 48th ACM/EDAC/IEEE Design Automation Conference (DAC).

[35]  Miodrag Potkonjak,et al.  Location errors in wireless embedded sensor networks: sources, models, and effects on applications , 2002, MOCO.

[36]  Miodrag Potkonjak,et al.  Device aging-based physically unclonable functions , 2011, 2011 48th ACM/EDAC/IEEE Design Automation Conference (DAC).

[37]  Miodrag Potkonjak,et al.  Optimal Worst-Case Coverage of Directional Field-of-View Sensor Networks , 2006, 2006 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks.

[38]  Miodrag Potkonjak,et al.  Power efficient organization of wireless sensor networks , 2001, ICC 2001. IEEE International Conference on Communications. Conference Record (Cat. No.01CH37240).

[39]  Miodrag Potkonjak,et al.  System-architectures for sensor networks issues, alternatives, and directions , 2002, Proceedings. IEEE International Conference on Computer Design: VLSI in Computers and Processors.

[40]  V. Reddy,et al.  A comprehensive framework for predictive modeling of negative bias temperature instability , 2004, 2004 IEEE International Reliability Physics Symposium. Proceedings.