A Bayesian Framework for Opinion Updates

Opinion Dynamics lacks a theoretical basis. In this article, I propose touse adecision-theoretic framework, based on the updating of subjective probabilities, as that basis.We will see we get a basic tool for a better understanding of the interaction betweenthe agents in Opinion Dynamics problems and for creating new models. I will reviewthe few existing applications of Bayesian update rules to both discrete and continuousopinion problems and show that several traditional models can be obtained as specialcases or approximations from these Bayesian models. The empirical basis and usefulproperties of the framework will be discussed and examples of how the frameworkcan be used to describe different problems given.

[1]  Dietrich Stauffer AIP Conference Proceedings on the Monte Carlo method in the physical sciences, to be edited by J.E. Gubernatis. How to convince others ? Monte Carlo simulations of the Sznajd model , 2003 .

[2]  D. Kahneman,et al.  Heuristics and Biases: The Psychology of Intuitive Judgment , 2002 .

[3]  P. Clifford,et al.  A model for spatial conflict , 1973 .

[4]  D. Stauffer,et al.  Election results and the Sznajd model on Barabasi network , 2001, cond-mat/0111147.

[5]  André C. R. Martins Modeling Scientific Agents for a Better Science , 2010, Adv. Complex Syst..

[6]  Thomas Oberlechner Psychology of Judgment and Decision-Making , 2006 .

[7]  James Edward Gubernatis,et al.  The Monte Carlo Method in the Physical Sciences: Celebrating the 50th Anniversary of the Metropolis Algorithm , 2003 .

[8]  A. Martins Probability biases as Bayesian inference , 2006, Judgment and Decision Making.

[9]  J. Tenenbaum,et al.  Optimal Predictions in Everyday Cognition , 2006, Psychological science.

[10]  Nestor Caticha,et al.  The evolution of learning systems: to Bayes or not to be , 2006 .

[11]  M. Allais Le comportement de l'homme rationnel devant le risque : critique des postulats et axiomes de l'ecole americaine , 1953 .

[12]  G Gigerenzer,et al.  Reasoning the fast and frugal way: models of bounded rationality. , 1996, Psychological review.

[13]  Andre C. R. Martins,et al.  CONTINUOUS OPINIONS AND DISCRETE ACTIONS IN OPINION DYNAMICS PROBLEMS , 2007, 0711.1199.

[14]  André C. R. Martins,et al.  The Importance of Disagreeing: Contrarians and Extremism in the Coda Model , 2009, Adv. Complex Syst..

[15]  S. Fortunato,et al.  Statistical physics of social dynamics , 2007, 0710.3256.

[16]  A. Caticha Relative Entropy and Inductive Inference , 2003, physics/0311093.

[17]  S. Galam Contrarian deterministic effects on opinion dynamics: “the hung elections scenario” , 2003, cond-mat/0307404.

[18]  J. Neumann,et al.  Theory of Games and Economic Behavior. , 1945 .

[19]  Rainer Hegselmann,et al.  Opinion dynamics and bounded confidence: models, analysis and simulation , 2002, J. Artif. Soc. Soc. Simul..

[20]  Diemo Urbig,et al.  Attitude Dynamics With Limited Verbalisation Capabilities , 2003, J. Artif. Soc. Soc. Simul..

[21]  S. Galam,et al.  Towards a theory of collective phenomena: Consensus and attitude changes in groups , 1991 .

[22]  Nestor Caticha,et al.  Statistical Mechanics of Online Learning of Drifting Concepts: A Variational Approach , 2004, Machine Learning.

[23]  Katarzyna Sznajd-Weron,et al.  Opinion evolution in closed community , 2000, cond-mat/0101130.

[24]  Serge Galam,et al.  Local dynamics vs. social mechanisms: A unifying frame , 2005 .

[25]  D. Ellsberg Decision, probability, and utility: Risk, ambiguity, and the Savage axioms , 1961 .

[26]  K. Sznajd-Weron Sznajd model and its applications , 2005, physics/0503239.

[27]  R. Holley,et al.  Ergodic Theorems for Weakly Interacting Infinite Systems and the Voter Model , 1975 .

[28]  E. Rowland Theory of Games and Economic Behavior , 1946, Nature.

[29]  T. Gilovich,et al.  Heuristics and Biases: Introduction – Heuristics and Biases: Then and Now , 2002 .

[30]  Vladimir Batagelj,et al.  Exploratory Social Network Analysis with Pajek , 2005 .

[31]  Guillaume Deffuant,et al.  Comparing Extremism Propagation Patterns in Continuous Opinion Models , 2006, J. Artif. Soc. Soc. Simul..

[32]  J. Baron Thinking and Deciding , 2023 .

[33]  E. Jaynes Probability theory : the logic of science , 2003 .

[34]  Guillaume Deffuant,et al.  Mixing beliefs among interacting agents , 2000, Adv. Complex Syst..

[35]  Joshua B. Tenenbaum,et al.  Theory-based Bayesian models of inductive reasoning , 2006 .

[36]  Edward M. Reingold,et al.  Graph drawing by force‐directed placement , 1991, Softw. Pract. Exp..

[37]  S. Galam,et al.  Sociophysics: A new approach of sociological collective behaviour. I. mean‐behaviour description of a strike , 1982, 2211.07041.

[38]  Serge Galam,et al.  Modelling rumors: the no plane Pentagon French hoax case , 2002, cond-mat/0211571.

[39]  Nestor Caticha,et al.  Opinion dynamics of learning agents: does seeking consensus lead to disagreement? , 2008, 0811.2099.

[40]  André C R Martins,et al.  Mobility and social network effects on extremist opinions. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  André C. R. Martins,et al.  An opinion dynamics model for the diffusion of innovations , 2008, 0809.5114.

[42]  Serge Galam,et al.  Opinion Dynamics, Minority Spreading and Heterogeneous Beliefs , 2006 .

[43]  Andre C. R. Martins,et al.  Bayesian updating rules in continuous opinion dynamics models , 2008, 0807.4972.