Comparative study of the ZnO and Zn1−xCdxO nanorod emitters hydrothermally synthesized and electrodeposited on p-GaN

Abstract Hydrothermal synthesis and electrodeposition are low-temperature and cost-effective growth techniques of high quality nanostructured active materials for opto-electronic devices. Here we report a hydrothermal seed layer-free and rapid synthesis (15 min) of epitaxial nanorod arrays of ZnO on p-GaN(0 0 0 1). The effects of hydrothermal (HT) versus electrochemical deposition (ECD) synthesis on the optical properties of ZnO nanorods/nanowires on p-GaN substrate are compared in details. For both types of layers, a strong photoluminescent UV-emission was found indicating the high quality of the synthesized ZnO layer. The hetero-structures were used for LED applications. With HT-ZnO and ECD-ZnO, UV-emission started at remarkably low forward voltage of 3.9–4.0 V and 4.4 V respectively and increased rapidly. Moreover, the LED structures showed a stable and repeatable electroluminescence. We propose for further studies a simple, efficient, seed layer-free and low temperature hydrothermal growth technique to fabricate high quality ZnO nanorods/p-GaN heterojunction LED nanodevices. It is also demonstrated that a single short wavelength emission can be shifted to the violet range with Cd-alloying of ZnO used for LED structure.

[1]  Ion Tiginyanu,et al.  Selective hydrogen gas nanosensor using individual ZnO nanowire with fast response at room temperature , 2010 .

[2]  Thierry Pauporté,et al.  Low‐Voltage UV‐Electroluminescence from ZnO‐Nanowire Array/p‐GaN Light‐Emitting Diodes , 2010, Advanced materials.

[3]  Bruno Viana,et al.  Tunable electroluminescence from low‐threshold voltage LED structure based on electrodeposited Zn1−xCdxO‐nanorods/p‐GaN heterojunction , 2012 .

[4]  Shuji Nakamura,et al.  The Blue Laser Diode: GaN based Light Emitters and Lasers , 1997 .

[5]  S. Chua,et al.  Influence of the alignment of ZnO nanorod arrays on light extraction enhancement of GaN-based light-emitting diodes , 2011 .

[6]  V. Ursaki,et al.  Photoluminescence and resonant Raman scattering from ZnO-opal structures , 2004 .

[7]  Directional and magnetic field enhanced emission of Cu-doped ZnO nanowires/ p -GaN heterojunction light-emitting diodes , 2011 .

[8]  Alfons Schulte,et al.  A rapid hydrothermal synthesis of rutile SnO2 nanowires , 2009 .

[9]  Kakuya Iwata,et al.  Interactions between gallium and nitrogen dopants in ZnO films grown by radical-source molecular-beam epitaxy , 2001 .

[10]  D. Lincot,et al.  Mechanistic study of ZnO nanorod array electrodeposition , 2008 .

[11]  Xiao-mei Zhang,et al.  Fabrication of a High‐Brightness Blue‐Light‐Emitting Diode Using a ZnO‐Nanowire Array Grown on p‐GaN Thin Film , 2009 .

[12]  Moon-Ho Ham,et al.  ZnO-nanowire-inserted GaN/ZnO heterojunction light-emitting diodes. , 2007, Small.

[13]  Ilaria Ciofini,et al.  High Aspect Ratio Ternary Zn1–xCdxO Nanowires by Electrodeposition for Light-Emitting Diode Applications , 2011 .

[14]  V. Ursaki,et al.  Epitaxial Electrodeposition of ZnO Nanowire Arrays on p-GaN for Efficient UV-Light-Emitting Diode Fabrication , 2010 .

[15]  Veaceslav Ursaki,et al.  Synthesis and characterization of ZnO nanowires for nanosensor applications , 2010 .

[16]  Veaceslav Ursaki,et al.  Photoluminescence of ZnO layers grown on opals by chemical deposition from zinc nitrate solution , 2004 .

[17]  L. Ono,et al.  Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium , 2010 .

[18]  S.J. Chang,et al.  White-light emission from InGaN-GaN multiquantum-well light-emitting diodes with Si and Zn codoped active well layer , 2002, IEEE Photonics Technology Letters.

[19]  T. Pauporté,et al.  Well-Aligned ZnO Nanowire Arrays Prepared by Seed-Layer-Free Electrodeposition and Their Cassie−Wenzel Transition after Hydrophobization , 2010 .

[20]  H. L. Tam,et al.  GaN/ZnO nanorod light emitting diodes with different emission spectra , 2009, Nanotechnology.

[21]  Dong Chan Kim,et al.  A comparative analysis of deep level emission in ZnO layers deposited by various methods , 2009 .

[22]  S. Chang,et al.  Electroluminescence from n-ZnO nanowires/p-GaN heterostructure light-emitting diodes , 2009 .

[23]  Light Output Enhancement of GaN-Based Light-Emitting Diodes Using ZnO Nanorod Arrays Produced by Aqueous Solution Growth Technique , 2010, IEEE Photonics Technology Letters.

[24]  D. C. Reynolds,et al.  Zinc oxide materials for electronic and optoelectronic device applications , 2011 .

[25]  M. Razeghi,et al.  III-Nitride wide bandgap semiconductors : a survey of the current status and future trends of the material and device technology , 2000 .

[26]  Oleg Lupan,et al.  Self-assembly of densely packed and aligned bilayer ZnO nanorod arrays , 2009 .

[27]  D. Lincot,et al.  Electrochemical growth of epitaxial eosin/ZnO hybrid films , 2003 .

[28]  David C. Look,et al.  Electrical and optical properties of p-type ZnO , 2005 .

[29]  H. Lee,et al.  Electroluminescence from Solution Grown n-ZnO Nanorod/p-GaN-Heterostructured Light Emitting Diodes , 2010 .

[30]  Wenjun Zhang,et al.  Violet-blue LEDs based on p-GaN/n-ZnO nanorods and their stability , 2011, Nanotechnology.

[31]  B. Viana,et al.  Low-Temperature Growth of ZnO Nanowire Arrays on p-Silicon (111) for Visible-Light-Emitting Diode Fabrication , 2010 .

[32]  Gyu-Chul Yi,et al.  Enhanced light output of GaN-based light-emitting diodes with ZnO nanorod arrays , 2008 .

[33]  Seong-Ju Park,et al.  Enhanced light extraction efficiency of GaN-based light-emitting diodes with ZnO nanorod arrays grown using aqueous solution , 2009 .

[34]  Ilaria Ciofini,et al.  Wavelength‐Emission Tuning of ZnO Nanowire‐Based Light‐Emitting Diodes by Cu Doping: Experimental and Computational Insights , 2011 .

[35]  Daniel Lincot,et al.  Toward laser emission of epitaxial nanorod arrays of ZnO grown by electrodeposition , 2006 .

[36]  Ion Tiginyanu,et al.  Fabrication and characterization of an individual ZnO microwire-based UV photodetector , 2011 .

[37]  S. Myers,et al.  Quantitative comparisons of dissolved hydrogen density and the electrical and optical properties of ZnO , 2003 .

[38]  O. Nur,et al.  A comparative study of the electrodeposition and the aqueous chemical growth techniques for the utilization of ZnO nanorods on p-GaN for white light emitting diodes , 2011 .

[39]  D. Look,et al.  The Path To ZnO Devices: Donor and Acceptor Dynamics , 2003 .

[40]  Daniel Lincot,et al.  Heteroepitaxial electrodeposition of zinc oxide films on gallium nitride , 1999 .

[41]  H. Morkoç,et al.  A COMPREHENSIVE REVIEW OF ZNO MATERIALS AND DEVICES , 2005 .

[42]  M. Mavrikakis,et al.  Practical Surface Treatments and Surface Chemistry of n-Type and p-Type GaN , 2008 .

[43]  V. Ursaki,et al.  Rapid thermal annealing induced change of the mechanism of multiphonon resonant Raman scattering from ZnO nanorods , 2007 .

[44]  Frank Henecker,et al.  Hydrogen: a relevant shallow donor in zinc oxide. , 2002, Physical review letters.

[45]  L. Chow,et al.  Nanofabrication and characterization of ZnO nanorod arrays and branched microrods by aqueous solution route and rapid thermal processing , 2007 .

[46]  H. C. Ong,et al.  Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films , 2001 .

[47]  S. Mohammad,et al.  High-Luminosity Blue and Blue-Green Gallium Nitride Light-Emitting Diodes , 1995, Science.

[48]  S. Jokela,et al.  Defects in ZnO , 2009 .

[49]  Yicheng Lu,et al.  Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency , 2007 .

[50]  Manijeh Razeghi,et al.  Electroluminescence at 375nm from a ZnO∕GaN:Mg∕c-Al2O3 heterojunction light emitting diode , 2006 .

[51]  M. R. Wagner,et al.  Ionized and neutral donor-bound excitons in ZnO , 2007 .

[52]  D. Look,et al.  Remote hydrogen plasma processing of ZnO single crystal surfaces , 2003 .

[53]  Supakorn Pukird,et al.  Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method , 2008 .

[54]  J. Sann,et al.  Nitrogen doping in bulk and epitaxial ZnO , 2004 .