Fuzzy Derivatives and Fuzzy Cauchy Problems Using LP Metric

A new approach for defining a fuzzy derivative is introduced and a comparison with a previous approach illustrates the advantages of the new method. A first order fuzzy differential equation and a fuzzy Cauchy problem are defined and sufficient conditions for existence and uniqueness of solutions to fuzzy initial value problems are given. Solutions are calculated for simple examples.

[1]  M. Puri,et al.  Fuzzy Random Variables , 1986 .

[2]  Osmo Kaleva The Cauchy problem for fuzzy differential equations , 1990 .

[3]  D. Dubois,et al.  Towards fuzzy differential calculus part 3: Differentiation , 1982 .

[4]  Didier Dubois,et al.  Fuzzy sets and systems ' . Theory and applications , 2007 .

[5]  M. Ming On embedding problems of fuzzy number spaces. Part 4 , 1993 .

[6]  P. Kloeden Remarks on Peano-like theorems for fuzzy differential equations , 1991 .

[7]  S. Seikkala On the fuzzy initial value problem , 1987 .

[8]  Lotfi A. Zadeh,et al.  On Fuzzy Mapping and Control , 1996, IEEE Trans. Syst. Man Cybern..

[9]  M. Puri,et al.  Differentials of fuzzy functions , 1983 .

[10]  Osmo Kaleva Fuzzy differential equations , 1987 .

[11]  A. Kandel,et al.  Fuzzy Differential Equations , 2019, Modeling and Control of Uncertain Nonlinear Systems with Fuzzy Equations and Z‐Number.

[12]  P. Kloeden,et al.  Metric spaces of fuzzy sets , 1990 .

[13]  O. He,et al.  On fuzzy differential equations , 1989 .

[14]  Ma Ming On embedding problems of fuzzy number spaces. IV , 1993 .

[15]  M. Puri,et al.  Limit theorems for fuzzy random variables , 1986, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[16]  R. Goetschel,et al.  Elementary fuzzy calculus , 1986 .

[17]  A. Kandel,et al.  Fuzzy sets, fuzzy algebra, and fuzzy statistics , 1978, Proceedings of the IEEE.