Recent progress in research and development of hollow cathodes for electric propulsion

[1]  Hiroyuki Koizumi,et al.  The technological and commercial expansion of electric propulsion , 2019, Acta Astronautica.

[2]  K. Nishiyama,et al.  Performance improvement of the μ10 microwave discharge ion thruster by expansion of the plasma production volume , 2019, Acta Astronautica.

[3]  Liqiu Wei,et al.  Study on electrons conduction paths in Hall thruster ignition processes with the cathode located inside and outside the magnetic separatrix , 2019, Acta Astronautica.

[4]  Yongjie Ding,et al.  High-Speed Camera Imaging of the Ignition Process in a Heaterless Hollow Cathode , 2019, IEEE Transactions on Plasma Science.

[5]  Daren Yu,et al.  10000-Ignition-Cycle Investigation of a LaB6 Hollow Cathode for 3–5-Kilowatt Hall Thruster , 2019, Journal of Propulsion and Power.

[6]  Michael Keidar,et al.  Mars Colonization: Beyond Getting There , 2018, Global challenges.

[7]  M. Nakano,et al.  Ion Thruster Operation with Carbon Nanotube Field Emission Cathode , 2019, Journal of Propulsion and Power.

[8]  I. Funaki,et al.  Experimental Investigation of LaB6 Hollow Cathode with Radiative Heater , 2019, TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN.

[9]  Hai-bin Tang,et al.  Numerical simulation of plasma power deposition on hollow cathode walls using particle-in-cell and Monte Carlo collision method , 2018, Physics of Plasmas.

[10]  Hitoshi Kuninaka,et al.  Explore space using swarms of tiny satellites , 2018, Nature.

[11]  I. Mikellides,et al.  Hollow Cathode Thermal Modelling and Self-Consistent Plasma Solution: Work Function Evaluation for a LaB6 Cathode. , 2018 .

[12]  I. Mikellides,et al.  Spot-to-plume Mode Transition Investigations in the HERMeS Hollow Cathode Discharge Using Coupled 2-D Axisymmetric Plasma-Thermal Simulations , 2018, 2018 Joint Propulsion Conference.

[13]  G. Alon,et al.  A 5,000-hr Heaterless Hollow Cathode Endurance Test , 2018, 2018 Joint Propulsion Conference.

[14]  Sarah E. Cusson,et al.  Ion Acoustic Turbulence in the Hollow Cathode Plume of a Hall Effect Thruster , 2018, 2018 Joint Propulsion Conference.

[15]  Marcel P. Georgin,et al.  Plasma Instabilities in the Plume of a Hollow Cathode , 2018, 2018 Joint Propulsion Conference.

[16]  H. Kamhawi,et al.  Iodine Hall-Effect Electric Propulsion System Research, Development, and System Durability Demonstration , 2018, 2018 Joint Propulsion Conference.

[17]  R. Wirz,et al.  Ion Heating Measurements on the Centerline of a High-Current Hollow Cathode Plume , 2018, Journal of Propulsion and Power.

[18]  I. Golosnoy,et al.  Development of a high current heaterless hollow cathode , 2018 .

[19]  R. Joussot,et al.  Anode position influence on discharge modes of a LaB 6 cathode in diode configuration , 2018 .

[20]  M. Weinzierl Space, the Final Economic Frontier , 2018 .

[21]  I. Mikellides,et al.  Hollow Cathode Simulations with a First-Principles Model of Ion-Acoustic Anomalous Resistivity , 2018, Journal of Propulsion and Power.

[22]  Yan Shen,et al.  Space micropropulsion systems for Cubesats and small satellites: from proximate targets to furthermost frontiers , 2018 .

[23]  D. Goebel,et al.  Life Evaluation of a Lanthanum Hexaboride Hollow Cathode for High-Power Hall Thruster , 2017, Journal of Propulsion and Power.

[24]  Dan R. Lev,et al.  Operation of a Hollow Cathode Neutralizer for Sub-100-W Hall and Ion Thrusters , 2017, IEEE Transactions on Plasma Science.

[25]  D. Pedrini,et al.  Sitael Hollow Cathodes for Low-Power Hall Effect Thrusters , 2017, IEEE Transactions on Plasma Science.

[26]  Q. A. Abbas,et al.  The Effect Hollow Cathode Depth on Plasma Characteristics , 2018 .

[27]  Yasushi Ohkawa,et al.  Field Emission Cathodes for an Electrodynamic Tether Experiment on the H-II Transfer Vehicle , 2018 .

[28]  Zachary Taillefer Characterization of the Near Plume Region of Hexaboride and Barium Oxide Hollow Cathodes operating on Xenon and Iodine , 2018 .

[29]  M. Minary‐Jolandan,et al.  Microscale 3D Printing of Nanotwinned Copper , 2018, Advanced materials.

[30]  M. Walker,et al.  Recent progress and perspectives of space electric propulsion systems based on smart nanomaterials , 2018, Nature Communications.

[31]  R. Joussot,et al.  Examination of a 5 A-class cathode with a LaB 6 flat disk emitter in the 2 A-20 A current range , 2017 .

[32]  Michael Keidar,et al.  Plasma under control: Advanced solutions and perspectives for plasma flux management in material treatment and nanosynthesis , 2017 .

[33]  Scott J. Hall,et al.  High-Power Performance of a 100-kW Class Nested Hall Thruster , 2017 .

[34]  I. Golosnoy,et al.  Thermal profile of a lanthanum hexaboride heaterless hollow cathode , 2017 .

[35]  Peiman Maghami,et al.  Colloid Microthruster Flight Performance Results from Space Technology 7 Disturbance Reduction System , 2017 .

[36]  R. Wirz,et al.  Propagation of ion acoustic wave energy in the plume of a high-current LaB_{6} hollow cathode. , 2017, Physical review. E.

[37]  H. Kurt,et al.  Note: Coaxial-heater hollow cathode. , 2017, The Review of scientific instruments.

[38]  Fabrizio Paganucci,et al.  Development of Hollow Cathodes for Space Electric Propulsion at Sitael , 2017 .

[39]  N. Kishi Management analysis for the space industry , 2017 .

[40]  L. Garrigues,et al.  Hollow cathode modeling: I. A coupled plasma thermal two-dimensional model , 2017 .

[41]  L. Garrigues,et al.  Hollow cathode modeling: II. Physical analysis and parametric study , 2017 .

[42]  D. Goebel,et al.  Note: Improved heater design for high-temperature hollow cathodes. , 2017, The Review of scientific instruments.

[43]  Brigitte Zypries Space, the Public, and Politics , 2017 .

[44]  K. Rielage,et al.  Paschen's law studies in cold gases , 2016, 1612.07170.

[45]  K. Kubota,et al.  Direct kinetic simulation of ion acoustic turbulence in cathode plume , 2017 .

[46]  P. M. Puchkov The low-current cathode for a small power electric propulsion , 2017 .

[47]  R. Wirz,et al.  Ion Acoustic Wave Propagation and Heating in a High-Current Hollow Cathode Plume , 2017 .

[48]  O. A. Gorshkov,et al.  Development of KM-60 Based Orbit Control Propulsion Subsystem for Geostationary Satellite , 2017 .

[49]  Horst Neumann,et al.  Modelling of a radio frequency plasma bridge neutralizer (RFPBN) , 2017 .

[50]  Joseph N. Pelton,et al.  Satellite Communications Overview , 2017 .

[51]  A. P. Sinitsin,et al.  Low-current Cathode with a BaO Based Thermoemitter☆ , 2017 .

[52]  A. Gallimore,et al.  An Experimental and Theoretical Study of Hollow Cathode Plume Mode Oscillations , 2017 .

[53]  Hideo Hosono,et al.  Transparent amorphous oxide semiconductors for organic electronics: Application to inverted OLEDs , 2016, Proceedings of the National Academy of Sciences.

[54]  A HansonWard,et al.  Satellite Internet in the Mobile Age , 2016 .

[55]  D. Pedrini,et al.  Experimental Characterization of a Lanthanum Hexaboride Hollow Cathode for Five-Kilowatt-Class Hall Thrusters , 2016 .

[56]  Jurg Zwahlen,et al.  Maturation of Iodine Fueled BIT-3 RF Ion Thruster and RF Neutralizer , 2016 .

[57]  Dan M. Goebel,et al.  Mechanisms for pole piece erosion in a 6-kW magnetically-shielded Hall thruster , 2016 .

[58]  Hani Kamhawi,et al.  Plasma Oscillation Characterization of NASA's HERMeS Hall Thruster via High Speed Imaging , 2016 .

[59]  Martin Tajmar,et al.  Development and Testing of Electric Propulsion Systems at TU Dresden , 2016 .

[60]  James E. Polk,et al.  Lanthanum Hexaboride Hollow Cathode Performance and Wear Testing for the Asteroid Redirect Mission Hall Thruster , 2016 .

[61]  James E. Polk,et al.  Ion acoustic turbulence and ion energy measurements in the plume of the HERMeS thruster hollow cathode , 2016 .

[62]  Michael Keidar,et al.  Nanoscaled Metamaterial as an Advanced Heat Pump and Cooling Media , 2016 .

[63]  A. Ray,et al.  12CaO.7Al$_{2}$O $_{3}$ Ceramic: A Review of the Electronic and Optoelectronic Applications in Display Devices , 2016, Journal of Display Technology.

[64]  I. Mikellides,et al.  The importance of the cathode plume and its interactions with the ion beam in numerical simulations of Hall thrusters , 2016 .

[65]  Stéphane Mazouffre,et al.  Electric propulsion for satellites and spacecraft: established technologies and novel approaches , 2016 .

[66]  I. Funaki,et al.  Hybrid-PIC Simulation on Plasma Flow of Hollow Cathode , 2016 .

[67]  Satoshi Hosoda,et al.  Development and Testing of the Hayabusa2 Ion Engine System , 2016 .

[68]  Yanhui Jia,et al.  Current Status of 5A Lab6 Hollow Cathode Life Tests in Lanzhou Institute of Physics, China , 2015 .

[69]  K. Nishiyama,et al.  In-Flight Operation of the Hayabusa2 Ion Engine System in the EDVEGA Phase , 2015 .

[70]  Ak Knoll,et al.  Quad Confinement Thruster - Industrialisation & Flight Integration , 2015 .

[71]  Hani Kamhawi,et al.  The Iodine Satellite (iSat) Project Development Towards Critical Design Review , 2015 .

[72]  I. Golosnoy,et al.  Investigation of Heaterless Hollow Cathode Breakdown , 2015 .

[73]  L. Rand,et al.  A Calcium Aluminate Electride Hollow Cathode , 2015, IEEE Transactions on Plasma Science.

[74]  Mitchell L. R. Walker,et al.  Operation of a Carbon Nanotube Field Emitter Array in a Hall Effect Thruster Plume Environment , 2015, IEEE Transactions on Plasma Science.

[75]  James E. Polk,et al.  Lanthanum Hexaboride Hollow Cathode for the Asteroid Redirect Robotic Mission 12.5 kW Hall Thruster , 2015 .

[76]  R. Wirz,et al.  Measurements of Transport due to Low Frequency Oscillations in a Rotating Hollow Cathode Plasma IEPC-2015-137 / ISTS-2015 , 2015 .

[77]  Leonid Appel,et al.  Development of a Low Current Heaterless Hollow Cathode for Hall Thrusters , 2015 .

[78]  M. Domonkos,et al.  Evaluation of Low-Current Orificed Hollow Cathodes , 2015 .

[79]  Fabrizio Paganucci,et al.  Theoretical Model of a Lanthanum Hexaboride Hollow Cathode , 2015, IEEE Transactions on Plasma Science.

[80]  I. Mikellides,et al.  Numerical Simulations of the Partially Ionized Gas in a 100-A LaB6 Hollow Cathode , 2015, IEEE Transactions on Plasma Science.

[81]  I. Mikellides,et al.  Ion acoustic turbulence in a 100-A LaB₆ hollow cathode. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[82]  George J. Williams,et al.  High Current Hollow Cathode Plasma Plume Measurements , 2014 .

[83]  H. Kuninaka,et al.  Performance Degradation of a Spacecraft Electron Cyclotron Resonance Neutralizer and Its Mitigation , 2014 .

[84]  R. Wirz,et al.  An Investigation of Low Frequency Plasma Instabilities in a Cylindrical Hollow Cathode Discharge , 2014 .

[85]  John Steven Snyder,et al.  Throttled Performance of the SPT-140 Hall Thruster , 2014 .

[86]  Steven R. Oleson,et al.  Mission and System Advantages of Iodine Hall Thrusters , 2014 .

[87]  R. Hofer,et al.  Plasma oscillations in a 6-kW magnetically shielded Hall thruster , 2014 .

[88]  I. Mikellides,et al.  Oxygen transport in the internal xenon plasma of a dispenser hollow cathode , 2014 .

[89]  Dan M. Goebel,et al.  High-Current Lanthanum Hexaboride Hollow Cathode for High-Power Hall Thrusters , 2014 .

[90]  Hitoshi Kuninaka,et al.  Cathode Power Development of Hall Thruster for Small Satellite using Microwave cathode , 2014 .

[91]  A. Nieto,et al.  Nanoscale damping characteristics of boron nitride nanotubes and carbon nanotubes reinforced polymer composites. , 2013, ACS applied materials & interfaces.

[92]  H. Hosono Exploring Electro-active Functionality of Transparent Oxide Materials , 2013 .

[93]  Nikolaos A. Gatsonis,et al.  Eight Kilowatt Hall Thruster System Characterization , 2013 .

[94]  L. Rand,et al.  Effect of a Low Work Function Insert on Hollow Cathode Temperature and Operation , 2013 .

[95]  Emre Turkoz,et al.  Design and thermal analysis of the insert region heater of a lanthanum hexaboride hollow cathode , 2013, 2013 6th International Conference on Recent Advances in Space Technologies (RAST).

[96]  V. Gurovich,et al.  Characterization of a Heaterless Hollow Cathode , 2013 .

[97]  L. Rand,et al.  Instant Start Electride Hollow Cathode , 2013 .

[98]  D. M. Goebel,et al.  High-Current Lanthanum Hexaboride Hollow Cathode for 10-to-50-kW Hall Thrusters , 2012, IEEE Transactions on Plasma Science.

[99]  M. Coletti,et al.  Insert Temperature Measurements of a 180A Hollow Cathode for the HiPER Project , 2012 .

[100]  Hani Kamhawi,et al.  Development and Testing of High Current Hollow Cathodes for High Power Hall Thrusters , 2012 .

[101]  Anita Sengupta,et al.  A high power ion thruster for deep space missions. , 2012, The Review of scientific instruments.

[102]  R. Branam,et al.  Performance Evaluation of an Iodine-Vapor Hall Thruster , 2012 .

[103]  H. Hosono,et al.  Synthesis and properties of 12CaO · 7Al2O3 electride: review of single crystal and thin film growth , 2012 .

[104]  P G Reyes,et al.  Paschen law for argon glow discharge , 2012 .

[105]  Hitoshi Kuninaka,et al.  Discussion on Performance History and Operations of Hayabusa Ion Engines , 2012 .

[106]  J. Foster,et al.  Electron current extraction from a permanent magnet waveguide plasma cathode. , 2011, The Review of scientific instruments.

[107]  Yukio Hayakawa,et al.  Development Status of Ion Engine for Air Drag Compensation of SLATS , 2011 .

[108]  H. Hosono,et al.  Solvated Electrons in High-Temperature Melts and Glasses of the Room-Temperature Stable Electride [Ca24Al28O64]4+⋅4e− , 2011, Science.

[109]  L. Wang,et al.  Use of coated silicon field emitters as neutralisers for fundamental physics space missions , 2005, physics/0509033.

[110]  R. M. Waggoner,et al.  Hollow Cathode With Low Work Function Electride Insert , 2011 .

[111]  Yasushi Ohkawa,et al.  A Carbon Nanotube Field Emission Cathode for Electrodynamic Tether Systems , 2011 .

[112]  Hiroyuki Koizumi,et al.  Performance Evaluation of a Miniature Ion Thruster μ1 with a Unipolar and Bipolar Operation , 2011 .

[113]  B. Weatherford Development and Study of an Electron Cyclotron Resonance Waveguide Plasma Cathode for Electric Propulsion Applications , 2011 .

[114]  I. Mikellides,et al.  The discharge plasma in ion engine neutralizers: Numerical simulations and comparisons with laboratory data , 2010 .

[115]  M. Walker,et al.  Lifetime and Failure Mechanisms of an Arrayed Carbon Nanotube Field Emission Cathode , 2010, IEEE Transactions on Electron Devices.

[116]  Dan M. Goebel,et al.  Compact lanthanum hexaboride hollow cathode. , 2010, The Review of scientific instruments.

[117]  James E. Polk,et al.  Performance Evaluation of the T6 Ion Engine , 2010 .

[118]  Yasushi Ohkawa,et al.  Research and Development of Carbon Nanotube Cathodes for Electric Propulsion , 2010 .

[119]  K. Diamant Resonant Cavity Plasma Electron Source , 2009, IEEE Transactions on Plasma Science.

[120]  Barry J. Kent,et al.  Field emission performance of multiwalled carbon nanotubes for a low-power spacecraft neutraliser , 2009 .

[121]  I. Mikellides Effects of viscosity in a partially ionized channel flow with thermionic emission , 2009 .

[122]  N. Fisch,et al.  A Parametric Study of Electron Extraction from a Low Frequency Inductively Coupled RF-Plasma Source , 2009 .

[123]  O. A. Gorshkov,et al.  Development of KM-5 Hall effect thruster and its flight testing onboard GEO spacecraft “Express-A4” , 2009 .

[124]  B. Rubin,et al.  Hollow Cathode Discharge Initiation and Fast Starting Cathode , 2009 .

[125]  I. Katz,et al.  Fundamentals of Electric Propulsion: Ion and Hall Thrusters , 2008 .

[126]  I. Katz,et al.  Insert Heating and Ignition in Inert-Gas Hollow Cathodes , 2008, IEEE Transactions on Plasma Science.

[127]  N. Hershkowitz,et al.  Improved operation of the nonambipolar electron source. , 2008, The Review of scientific instruments.

[128]  James E. Polk,et al.  Tungsten and Barium Transport in the Internal Plasma of Hollow Cathodes , 2008 .

[129]  Ioannis G. Mikellides,et al.  Wear Mechanisms in Electron Sources for Ion Propulsion, 1: Neutralizer Hollow Cathode , 2008 .

[130]  M. Jayaraman,et al.  The GEOSAT electrical propulsion subsystem based on the KM-45 HET , 2008 .

[131]  I. Mikellides,et al.  Wear Mechanisms in Electron Sources for Ion Propulsion, 2: Discharge Hollow Cathode , 2008 .

[132]  W. Tighe,et al.  Hollow cathode emission and ignition characterization , 2008, 2008 IEEE International Vacuum Electronics Conference.

[133]  N. Cornu,et al.  PPS® 1350-G qualification status 10500 h , 2008 .

[134]  N. N. Koshelev,et al.  Investigation of Hollow Cathode for Low Power Hall Effect Thruster , 2008 .

[135]  Satomi Kawamoto,et al.  An experimental study on carbon nanotube cathodes for electrodynamic tether propulsion , 2007 .

[136]  Hideo Hosono,et al.  Work Function of a Room-Temperature, Stable Electride [Ca24Al28O64] 4+(e-)4. , 2008 .

[137]  Dan M. Goebel,et al.  Potential Fluctuations and Energetic Ion Production in Hollow Cathode Discharges , 2007 .

[138]  James E. Polk,et al.  Thermal Model of the Hollow Cathode Using Numerically Simulated Plasma Fluxes , 2007 .

[139]  S. Bruque,et al.  Crystal structures and in-situ formation study of mayenite electrides. , 2007, Inorganic chemistry.

[140]  H. Hosono,et al.  Fabrication of room temperature-stable 12CaO · 7Al2O3 electride: a review , 2007 .

[141]  Dan M. Goebel,et al.  Evidence of nonclassical plasma transport in hollow cathodes for electric propulsion , 2007 .

[142]  K. Nishiyama,et al.  Powered Flight of Electron Cyclotron Resonance Ion Engines on Hayabusa Explorer , 2007 .

[143]  Dan M. Goebel,et al.  Plasma Potential Behavior and Plume Mode Transitions in Hollow Cathode Discharges , 2007 .

[144]  N. Fisch,et al.  RF Plasma Cathode-Neutralizer for Space Applications , 2007 .

[145]  N. Koch,et al.  Status of the THALES Tungsten/Osmium Mixed-Metal Hollow Cathode Neutralizer Development , 2007 .

[146]  I. Mikellides,et al.  Driving Processes in the Orifice and Near-Plume Regions of a Hollow Cathode , 2006 .

[147]  Dan M. Goebel,et al.  Performance Evaluation of the XIPS 25-cm Thruster for Application to NASA Discovery Missions , 2006 .

[148]  James E. Polk,et al.  Plasma processes inside dispenser hollow cathodes , 2006 .

[149]  L. Wang,et al.  Investigation of fabrication uniformity and emission reliability of silicon field emitters for use in space , 2006 .

[150]  H. Hosono,et al.  Synthesis of a room temperature stable 12CaO·7Al2O3 electride from the melt and its application as an electron field emitter , 2006 .

[151]  E. Wagenaars Plasma breakdown of low-pressure gas discharges , 2006 .

[152]  T. Kamiya,et al.  Intense thermal field electron emission from room-temperature stable electride , 2005 .

[153]  I. Mikellides,et al.  Hollow cathode theory and experiment. II. A two-dimensional theoretical model of the emitter region , 2005 .

[154]  Dan M. Goebel,et al.  Hollow cathode theory and experiment. I. Plasma characterization using fast miniature scanning probes , 2005 .

[155]  A. Sengupta Destructive physical analysis of hollow cathodes from the Deep Space 1 Flight spare ion engine 30,000 hr life test , 2005 .

[156]  I. Ponomaryova,et al.  Optical and probe measurements of the hollow cathode plasma , 2005 .

[157]  Kuei-Ru Chien,et al.  Performance Evaluation and Life Test of the XIPS Hollow Cathode Heater , 2005 .

[158]  Dan M. Goebel,et al.  LaB6 Hollow Cathodes for Ion and Hall Thrusters , 2005 .

[159]  I. Mikellides,et al.  Energetic Ion Production and Keeper Erosion in Hollow Cathode Discharges IEPC-2005-266 , 2005 .

[160]  Michael J. Patterson,et al.  Operation of a Microwave Electron Cyclotron Resonance Cathode , 2004 .

[161]  Vlad Hruby,et al.  Testing of Carbon Nanotube Field Emission Cathodes , 2004 .

[162]  John R. Anderson,et al.  An Overview of the Results from the 30,000 Hr Life Test of Deep Space 1 Flight Spare Ion Engine , 2004 .

[163]  B. Thornber,et al.  Temperature distributions in hollow cathode emitters , 2004 .

[164]  C. M. Collingwood,et al.  Reliability tests of gated silicon field emitters for use in space , 2004 .

[165]  E. Huq,et al.  Optimization of silicon field-emission arrays fabrication for space applications , 2004 .

[166]  Hideo Hosono,et al.  Field Emission of Electron Anions Clathrated in Subnanometer‐Sized Cages in [Ca24Al28O64]4+(4e–) , 2004 .

[167]  Edgar Y. Choueiri,et al.  A Critical History of Electric Propulsion: The First 50 Years (1906-1956) , 2004 .

[168]  R. T. Longo,et al.  Physics of thermionic dispenser cathode aging , 2003 .

[169]  H. Hosono,et al.  Electron localization and a confined electron gas in nanoporous inorganic electrides. , 2003, Physical review letters.

[170]  Rainer Killinger,et al.  ARTEMIS orbit raising inflight experience with ion propulsion , 2003 .

[171]  Hideo Hosono,et al.  High-Density Electron Anions in a Nanoporous Single Crystal: [Ca24Al28O64]4+(4e-) , 2003, Science.

[172]  James E. Polk,et al.  One-Dimensional Hollow Cathode Model , 2003 .

[173]  S. Gabriel,et al.  Microfluidic Model of a Micro Hollow Cathode for Small Ion Thrusters (Invited) , 2003 .

[174]  H. Uhm,et al.  Influence of gas temperature on electrical breakdown in cylindrical electrodes , 2003 .

[175]  M. Andrenucci,et al.  ELECTRIC PROPULSION IN ITALY : STATUS AND PERSPECTIVES , 2003 .

[176]  Alec D. Gallimore,et al.  COMPATIBILITY OF FIELD EMISSION CATHODE AND ELECTRIC PROPULSION TECHNOLOGIES by , 2003 .

[177]  Matthew T. Domonkos,et al.  A Particle and Energy Balance Model of the Orificed Hollow Cathode , 2002 .

[178]  Michael J. Patterson,et al.  Microwave ECR Ion Thruster Development Activities at NASA Glenn Research Center , 2002 .

[179]  James E. Polk,et al.  The DS1 hyper-extended mission , 2002 .

[180]  Michael J. Patterson,et al.  NEXT: NASA's Evolutionary Xenon Thruster , 2002 .

[181]  F. Paganucci,et al.  A Hollow Cathode Model for Application to the Electric Propulsion , 2002 .

[182]  John R. Brophy,et al.  NASA's Deep Space 1 ion engine , 2002 .

[183]  Michael J. Patterson,et al.  Recent Development Activities in Hollow Cathode Technology , 2001 .

[184]  V. Lisovskiy,et al.  Low-pressure gas breakdown in uniform dc electric field , 2000 .

[185]  A. Ketsdever,et al.  Performance of Field Emission Cathodes in Xenon Electric Propulsion System Environments , 2000 .

[186]  Anil Kumar Malik,et al.  Noise and Oscillatory Disturbances in the T6 Ion Thruster Hollow Cathode , 1999 .

[187]  N. Koshelev,et al.  Researching of self-heated hollow cathodes start erosion characteristics , 1999 .

[188]  Rainer Killinger,et al.  Electric propulsion system RITA for ARTEMIS , 1999 .

[189]  John R. Anderson,et al.  An overview of the results from an 8200 hour wear test of the NSTAR ion thruster , 1999 .

[190]  S. Satori,et al.  Development and Demonstration of a Cathodeless Electron Cyclotron Resonance Ion Thruster , 1998 .

[191]  M. Minucci,et al.  SIMPLE NUMERICAL MODEL DESCRIBING DISCHARGE PARAMETERS IN ORIFICED HOLLOW CATHODE DEVICES( , 1997 .

[192]  I. Katz,et al.  Theory of hollow operation in spot and plume modes , 1994 .

[193]  K. Schoenbach,et al.  Paschen's law for a hollow cathode discharge , 1993 .

[194]  George C. Soulas,et al.  Hollow cathode heater development for the Space Station plasma contactor , 1993 .

[195]  William R. Kerslake,et al.  Development and flight history of the SERT II spacecraft , 1993 .

[196]  P. Turchi,et al.  A first-principles model for orificed hollow cathode operation , 1992 .

[197]  C. Spindt,et al.  Field-emitter arrays for vacuum microelectronics , 1991 .

[198]  J. Brophy,et al.  A 5,000 hour xenon hollow cathode life test , 1991 .

[199]  T. H. Stix Waves in plasmas: Highlights from the past and present , 1990 .

[200]  P. Harris,et al.  The operation of ion thruster hollow cathodes using rare gas propellants , 1990 .

[201]  G. S. Macrae,et al.  Requirements for long-life operation of inert gas hollow cathodes - Preliminary results , 1990 .

[202]  J. Brophy,et al.  Tests of high current hollow cathodes for ion engines , 1988 .

[203]  S. Uryupin,et al.  Ion-acoustic turbulence and anomalous transport , 1988 .

[204]  M. Schatz Heaterless ignition of inert gas ion thruster hollow cathodes , 1985 .

[205]  W. Deininger,et al.  Test bed ion engine development , 1984 .

[206]  E. Adler,et al.  Dispenser cathode life prediction model , 1984, 1984 International Electron Devices Meeting.

[207]  Paul J. Wilbur,et al.  Phenomenological Model Describing Orificed, Hollow Cathode Operation , 1983 .

[208]  P. Wilbur,et al.  A model for mercury orificed hollow cathodes - Theory and experiment , 1982 .

[209]  D. E. Schechter,et al.  Long-pulse ion source for neutral-beam applications , 1982 .

[210]  V. K. Rawlin,et al.  Operation of the J-series thruster using inert gas , 1982 .

[211]  G. Aston Hollow cathode startup using a microplasma discharge , 1981 .

[212]  D. Schram,et al.  Collective scattering of CO2‐laser light from ion‐acoustic turbulence , 1981 .

[213]  F. Boeschoten,et al.  An Investigation of the Positive Column of a Hollow Cathode Arc in a Magnetic Field. Part II , 1979 .

[214]  H. Kaufman,et al.  Correlation of inert gas hollow cathode performance , 1978 .

[215]  D. Goebel,et al.  Lanthanum hexaboride hollow cathode for dense plasma production. , 1978, The Review of scientific instruments.

[216]  N. A. Krall,et al.  Anomalous transport in high-temperature plasmas with applications to solenoidal fusion systems , 1977 .

[217]  H. Kaufman Technology of Electron-Bombardment Ion Thrusters , 1975 .

[218]  T. Rognlien,et al.  Low-frequency flute instabilities of a hollow cathode arc discharge - Theory and experiment. , 1973 .

[219]  C. M. Philip A Study of Hollow Cathode Discharge Characteristics , 1970 .

[220]  W. R. Kerslake,et al.  SERT II - Mission and experiments , 1970 .

[221]  W. R. Kerslake,et al.  SERT II - Durability of the hollow cathode and future applications of hollow cathodes , 1969 .

[222]  G. A. Csiky,et al.  Investigation of a hollow cathode discharge plasma. , 1969 .

[223]  C. Spindt A Thin‐Film Field‐Emission Cathode , 1968 .

[224]  E. Pawlik,et al.  A mercury plasma-bridge neutralizer , 1967 .

[225]  D. Morse Plasma Rotation in a Hollow‐Cathode Discharge , 1965 .

[226]  H. C. Miller,et al.  Breakdown potential of neon below the paschen minimum , 1964 .

[227]  David J. Rose,et al.  Highly Ionized Hollow Cathode Discharge , 1962 .

[228]  W. B. Thompson Transport Processes in the Plasma , 1960 .

[229]  F. Heymann Breakdown in Cold-Cathode Tubes at Low Pressure , 1950 .

[230]  O. Richardson,et al.  Electron Emission from Metals as a Function of Temperature , 1924 .

[231]  F. Paschen,et al.  Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz , 1889 .