20% efficient solar cells fabricated from epitaxially grown and freestanding n-type wafers

[1]  Stefan Janz,et al.  Epitaxial Growth of High Quality n-type Silicon Foils in a Quasi-inline APCVD Reactor , 2015 .

[2]  S. Glunz,et al.  Tunnel oxide passivated contacts as an alternative to partial rear contacts , 2014 .

[3]  A. Fell,et al.  A Free and Fast Three-Dimensional/Two-Dimensional Solar Cell Simulator Featuring Conductive Boundary and Quasi-Neutrality Approximations , 2013, IEEE Transactions on Electron Devices.

[4]  Rolf Brendel,et al.  19%‐efficient and 43 µm‐thick crystalline Si solar cell from layer transfer using porous silicon , 2012 .

[5]  Andreas Schenk,et al.  Explanation of commonly observed shunt currents in c-Si solar cells by means of recombination statistics beyond the Shockley-Read-Hall approximation , 2011 .

[6]  Otwin Breitenstein,et al.  Nondestructive local analysis of current-voltage characteristics of solar cells by lock-in thermography , 2011, 2011 37th IEEE Photovoltaic Specialists Conference.

[7]  S. Rein,et al.  Fill factor analysis of solar cells' current–voltage curves , 2010 .

[8]  H. Lautenschlager,et al.  Plasma Hydrogen Passivation For Crystalline Silicon Thin-Films , 2008 .

[9]  C. Haase,et al.  The RTCVD160 - a new lab-type silicon CVD processor for silicon deposition on large area substrates , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[10]  Rolf Brendel,et al.  Review of Layer Transfer Processes for Crystalline Thin-Film Silicon Solar Cells , 2001 .

[11]  Stefan Janz,et al.  Reorganization of porous silicon: effect on epitaxial layer quality and detachment , 2014 .

[12]  S. Glunz,et al.  Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics , 2014 .

[13]  S. Glunz,et al.  Improved parameterization of Auger recombination in silicon , 2012 .