A quantum cascade laser-based optical feedback cavity-enhanced absorption spectrometer for the simultaneous measurement of CH4 and N2O in air

Optical feedback cavity-enhanced absorption spectroscopy (OF CEAS) has been demonstrated with a thermoelectrically cooled continuous wave distributed feedback quantum cascade laser (QCL) operating at wavelengths around 7.84 μm. The QCL is coupled to an optical cavity which creates an absorption pathlength greater than 1000 m. The experimental design allows optical feedback of infra-red light, resonant within the cavity, to the QCL, which initiates self-locking at each TEM00 cavity mode frequency excited. The QCL linewidth is narrowed to below the mode linewidth, greatly increasing the efficiency of injection of light into the cavity. At the frequency of each longitudinal cavity mode, the absorption coefficient of an intracavity sample is obtained from the transmission at the mode maximum, measured with a thermoelectrically cooled detector: spectral line profiles of CH4 and N2O in ambient air were recorded simultaneously and with a resolution of 0.01386 cm−1. A minimum detectable absorption coefficient of 5.5×10−8 cm−1 was demonstrated after an averaging time of 1 s for this completely thermoelectrically cooled system. The bandwidth-normalised limit for a single cavity mode is 5.6×10−9 cm−1 Hz−1/2 (1σ).

[1]  Johanna L. Miller,et al.  Cavity ring-down spectroscopy measurements of single aerosol particle extinction. I. The effect of position of a particle within the laser beam on extinction. , 2007, The Journal of chemical physics.

[2]  M. Osiński,et al.  Linewidth broadening factor in semiconductor lasers--An overview , 1987 .

[3]  Grant A. D. Ritchie,et al.  4 Cavity ring-down and cavity enhanced spectroscopy using diode lasers , 2005 .

[4]  Federico Capasso,et al.  Infrared cavity ringdown and integrated cavity output spectroscopy for trace species monitoring , 2002, SPIE Optics East.

[5]  L. Hollberg,et al.  Frequency stabilization of semiconductor lasers by resonant optical feedback. , 1987, Optics letters.

[6]  S. Borri,et al.  Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit. , 2009, Physical review letters.

[7]  Daniele Romanini,et al.  Optical feedback cavity-enhanced absorption spectroscopy for in situ measurements of the ratio 13C:12C in CO2 , 2008 .

[8]  Daniele Romanini,et al.  Two schemes for trace detection using cavity ringdown spectroscopy , 2004 .

[9]  Yeon H. Lee Alignment of an off-axis parabolic mirror with two parallel He-Ne laser beams , 1992 .

[10]  Marcella Giovannini,et al.  Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser , 2006 .

[11]  David I. Rosen,et al.  Integrated cavity output spectroscopy measurements of NO levels in breath with a pulsed room-temperature QCL , 2005 .

[12]  Jin Kim,et al.  Optical-feedback cavity ring-down spectroscopy measurements of extinction by aerosol particles. , 2009, The journal of physical chemistry. A.

[13]  Daniele Romanini,et al.  Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking , 2005 .

[14]  Daniele Romanini,et al.  Optical–feedback cavity–enhanced absorption: a compact spectrometer for real–time measurement of atmospheric methane , 2006 .

[15]  Roderic L Jones,et al.  Broad-band cavity ring-down spectroscopy. , 2003, Chemical reviews.

[16]  A. O’Keefe,et al.  Cavity ring‐down optical spectrometer for absorption measurements using pulsed laser sources , 1988 .

[17]  Brian N. Ellison,et al.  Experimental investigation of high-frequency noise and optical feedback effects using a 9.7 μm continuous-wave distributed-feedback quantum-cascade laser , 2007 .

[18]  R. Zare,et al.  Cavity ringdown spectroscopy using mid-infrared quantum-cascade lasers. , 2000, Optics letters.

[19]  K. Vahala,et al.  Measurement of the linewidth enhancement factor α of semiconductor lasers , 1983 .

[20]  A. Chraplyvy,et al.  Regimes of feedback effects in 1.5-µm distributed feedback lasers , 1986 .

[21]  F. Capasso,et al.  Quantum Cascade Lasers , 2002 .

[22]  Frank K. Tittel,et al.  Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy , 2006 .

[23]  F. Capasso,et al.  New frontiers in quantum cascade lasers and applications , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[24]  M. Allen,et al.  Diode laser absorption sensors for gas-dynamic and combustion flows. , 1998, Measurement science & technology.

[25]  G. Giuliani,et al.  Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect , 2004, IEEE Photonics Technology Letters.

[26]  Dc Daan Schram,et al.  Trace gas measurements using optically resonant cavities and quantum cascade lasers operating at room temperature , 2008 .

[27]  Guido Giuliani,et al.  Linewidth enhancement factor of terahertz quantum cascade lasers , 2008 .

[28]  Dirk Richter,et al.  First demonstration of a high performance difference frequency spectrometer on airborne platforms. , 2007, Optics express.

[29]  Jae Yong Lee,et al.  Theoretical analysis on the dynamic absorption saturation in pulsed cavity ringdown spectroscopy , 2004 .

[30]  B. Parvitte,et al.  Quantum cascade laser spectroscopy of N2O in the 7.9 μm region for the in situ monitoring of the atmosphere , 2008 .

[31]  V. Motto-Ros,et al.  Extensive characterization of the optical feedback cavity enhanced absorption spectroscopy (OF-CEAS) technique: ringdown-time calibration of the absorption scale , 2008 .

[32]  S. Ohshima,et al.  Optimization of injection current and feedback phase of an optically self‐locked laser diode , 1992 .

[33]  P. Rairoux,et al.  Mode-by-mode optical feedback: cavity ringdown spectroscopy , 2007 .

[34]  Guido Giuliani,et al.  Measurements of the alpha factor of a distributed-feedback quantum cascade laser by an optical feedback self-mixing technique. , 2006, Optics letters.

[35]  N. Langford,et al.  A compact quantum-cascade laser based spectrometer for monitoring the concentrations of methane and nitrous oxide in the troposphere , 2006 .

[36]  Philip A Martin,et al.  Near-infrared diode laser spectroscopy in chemical process and environmental air monitoring. , 2002, Chemical Society reviews.

[37]  G. Berden,et al.  Cavity ring-down spectroscopy: Experimental schemes and applications , 2000 .

[38]  A. Foltynowicz,et al.  Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential , 2008 .

[39]  F. Capasso,et al.  Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser. , 2001, Applied optics.

[40]  Michael N. R. Ashfold,et al.  Cavity ring-down spectroscopy , 1998 .

[41]  Colette McDonagh,et al.  Optical chemical sensors. , 2008, Chemical reviews.

[42]  Vincent R. Gray Climate Change 2007: The Physical Science Basis Summary for Policymakers , 2007 .

[43]  D. Richter,et al.  Difference frequency generation laser based spectrometers , 2009 .

[44]  Daniele Romanini,et al.  A water isotope (2H, 17O, and 18O) spectrometer based on optical feedback cavity-enhanced absorption for in situ airborne applications , 2006 .

[45]  Andrew J. Orr-Ewing,et al.  Phase-shift cavity ring-down spectroscopy using mid-IR light from a difference frequency generation PPLN waveguide. , 2010, Optics letters.

[46]  Steven S Brown,et al.  Absorption spectroscopy in high-finesse cavities for atmospheric studies. , 2003, Chemical reviews.

[47]  John Tulip,et al.  Pulsed quantum cascade laser-based cavity ring-down spectroscopy for ammonia detection in breath. , 2006, Applied optics.

[48]  K. Vahala,et al.  On the linewidth enhancement factor α in semiconductor injection lasers , 1983 .

[49]  Gus Hancock,et al.  Mid-infrared ethene detection using difference frequency generation in a quasi-phase-matched LiNbO3 waveguide. , 2009, Applied optics.

[50]  Maurus Tacke,et al.  New developments and applications of tunable IR lead salt lasers , 1995 .

[51]  A. Cho,et al.  Spectroscopic detection of biological NO with a quantum cascade laser , 2001, Applied physics. B, Lasers and optics.

[52]  F. Capasso,et al.  Quantum cascade lasers in chemical physics , 2010 .

[53]  M. Nix,et al.  Optical feedback cavity-enhanced absorption spectroscopy (OF-CEAS) in a ring cavity , 2010 .

[54]  A. Kosterev,et al.  Chemical sensors based on quantum cascade lasers , 2002 .

[55]  O. Edenhofer,et al.  Mitigation from a cross-sectoral perspective , 2007 .

[56]  F. Capasso,et al.  Recent progress in quantum cascade lasers and applications , 2001 .

[57]  A spectroscopic study of water vapor isotopologues H216O, H218O and HDO using a continuous wave DFB quantum cascade laser in the 6.7 μm region for atmospheric applications , 2006 .

[58]  T. J. Blasing Recent Greenhouse Gas Concentrations , 2009 .

[59]  D. W. Allan,et al.  Statistics of atomic frequency standards , 1966 .

[60]  P. Kaspersen,et al.  Gas monitoring in the process industry using diode laser spectroscopy , 1998 .

[61]  Y. Rouillard,et al.  Looking into the volcano with a Mid-IR DFB diode laser and Cavity Enhanced Absorption Spectroscopy. , 2006, Optics express.

[62]  C. Henry Theory of the linewidth of semiconductor lasers , 1982 .

[63]  Hans-Peter Loock,et al.  Chemical Sensing Using Fiber Cavity Ring-Down Spectroscopy , 2010, Sensors.

[64]  J. Burie,et al.  Continuous-wave mid-infrared laser sources based on difference frequency generation , 2007 .

[65]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[66]  A. Clairon,et al.  Frequency noise analysis of optically self-locked diode lasers , 1989 .

[67]  Rudy Peeters,et al.  Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy , 1998 .

[68]  Development of a spectrometer using a continuous wave distributed feedback quantum cascade laser operating at room temperature for the simultaneous analysis of N2O and CH4 in the Earth's atmosphere. , 2008, Applied optics.

[69]  Jacob T. Stewart,et al.  A quantum cascade laser cw cavity ringdown spectrometer coupled to a supersonic expansion source. , 2010, The Review of scientific instruments.

[70]  Jinchun Xie,et al.  CAVITY RING-DOWN SPECTROSCOPY IN LIQUID PHASE , 2002 .

[71]  Klaus Petermann,et al.  Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback , 1988 .