Typing and Computational Properties of Lambda Expressions

Abstract We use a perception of second-order typing in the λ-Calculus, as conveying semantic properties of expressions in models over λ-expressions, to exhibit natural and uniform proofs of theorems of Girard (1971/1972) and of Coppo, Dezani and Veneri (1981) about the relations between typing properties and computational properties of λ-expressions (solvability, normalizability, strong normalizability), and of some generalizations of these theorems.

[1]  Sören Stenlund Combinators, λ-Terms and Proof Theory , 2011 .

[2]  Alonzo Church,et al.  A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.

[3]  Mariangiola Dezani-Ciancaglini,et al.  A filter lambda model and the completeness of type assignment , 1983, Journal of Symbolic Logic.

[4]  Mario Coppo,et al.  An Extended Polymorphic Type System for Applicative Languages , 1980, MFCS.

[5]  Peter B. Andrews Resolution in type theory , 1971, Journal of Symbolic Logic.

[6]  John C. Reynolds,et al.  Towards a theory of type structure , 1974, Symposium on Programming.

[7]  de Ng Dick Bruijn,et al.  The mathematical language AUTOMATH, its usage, and some of its extensions , 1970 .

[8]  Daniel Leivant,et al.  The complexity of parameter passing in polymorphic procedures , 1981, STOC '81.

[9]  Daniel Leivant Reasoning about functional programs and complexity classes associated with type disciplines , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[10]  Christopher P. Wadsworth,et al.  The Relation Between Computational and Denotational Properties for Scott's Dinfty-Models of the Lambda-Calculus , 1976, SIAM J. Comput..

[11]  Daniel Leivant,et al.  The Expressiveness of Simple and Second-Order Type Structures , 1983, JACM.

[12]  Daniel Leivant,et al.  Polymorphic type inference , 1983, POPL '83.

[13]  Mariangiola Dezani-Ciancaglini,et al.  An extension of the basic functionality theory for the λ-calculus , 1980, Notre Dame J. Formal Log..

[14]  Dag Prawitz Hauptsatz for Higher Order Logic , 1968, J. Symb. Log..

[15]  Kim B. Bruce,et al.  The Semantics of Second Order Polymorphic Lambda Calculus , 1984, Semantics of Data Types.

[16]  William W. Tait,et al.  Intensional interpretations of functionals of finite type I , 1967, Journal of Symbolic Logic.

[17]  Leon Henkin,et al.  Completeness in the theory of types , 1950, Journal of Symbolic Logic.

[18]  D. Prawitz Ideas and Results in Proof Theory , 1971 .

[19]  Moto-O. Takahashi,et al.  A proof of cut-elimination theorem in simple type-theory , 1967 .

[20]  Mariangiola Dezani-Ciancaglini,et al.  Functional Characters of Solvable Terms , 1981, Math. Log. Q..

[21]  Ravi Sethi,et al.  A semantic model of types for applicative languages , 1982, LFP '82.

[22]  P. Martin-Löf Hauptsatz for the Theory of Species , 1971 .

[23]  W. W. Tait,et al.  A nonconstructive proof of Gentzen’s Hauptsatz for second order predicate logic , 1966 .

[24]  James H. Morris,et al.  Lambda-calculus models of programming languages. , 1969 .

[25]  Gordon D. Plotkin,et al.  An ideal model for recursive polymorphic types , 1984, Inf. Control..

[26]  W. Tait A realizability interpretation of the theory of species , 1975 .

[27]  Luis E. Sanchis,et al.  Functionals defined by recursion , 1967, Notre Dame J. Formal Log..

[28]  J. Girard Une Extension De ĽInterpretation De Gödel a ĽAnalyse, Et Son Application a ĽElimination Des Coupures Dans ĽAnalyse Et La Theorie Des Types , 1971 .