Homogenization principles and their application to continuum damage mechanics

The concept of homogenization is utilized herein to develop simplified methodologies for predicting the response of solids that develop multi-scale damage. This methodology is cast within a computational framework in order to produce efficient algorithms for a variety of media including granular and layered composites. Examples are given to exemplify the usefulness of this approach.

[1]  Martin Rh,et al.  Composite Materials: Fatigue and Fracture, Fourth Volume , 1993 .

[2]  David H. Allen,et al.  A thermomechanical constitutive theory for elastic composites with distributed damage. II: Application to matrix cracking in laminated composites , 1987 .

[3]  David H. Allen,et al.  Homogenization techniques for thermoviscoelastic solids containing cracks , 1998 .

[4]  David H. Allen,et al.  A model for predicting grain boundary cracking in polycrystalline viscoplastic materials including scale effects , 1999 .

[5]  James G. Boyd,et al.  Micromechanical analysis of a continuous fiber metal matrix composite including the effects of matrix viscoplasticity and evolving damage , 1994 .

[6]  Charles E. Harris,et al.  The upper bounds of reduced axial and shear moduli in cross-ply laminates with matrix cracks , 1991 .

[7]  David H. Allen,et al.  A thermomechanical constitutive theory for elastic composites with distributed damage—I. Theoretical development , 1987 .

[8]  David H. Allen,et al.  A computational model for predicting damage evolution in laminated composite plates , 1999 .

[9]  J. Mandel,et al.  Contribution théorique à l’étude de l’écrouissage et des lois de l’écoulement plastique , 1966 .

[10]  James G. Boyd,et al.  Micromechanics and homogenization of inelastic composite materials with growing cracks , 1996 .

[11]  F. Costanzo,et al.  A Micromechanics Approach for Constructing Locally Averaged Damage Dependent Constitutive Equations in Inelastic Composites , 1993 .

[12]  David H. Allen,et al.  Modeling of Delamination Damage Evolution in Laminated Composites Subjected to Low Velocity Impact , 1994 .

[13]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[14]  David H. Allen,et al.  A micromechanical model for a viscoelastic cohesive zone , 2001 .

[15]  Charles E. Harris,et al.  Internal State Variable Approach for Predicting Stiffness Reductions in Fibrous Laminated Composites with Matrix Cracks , 1989 .

[16]  Ramesh Talreja,et al.  Damage mechanics of composite materials , 1994 .

[17]  E. Cosserat,et al.  Théorie des Corps déformables , 1909, Nature.