Aerosol Properties and Processes: A Path from Field and Laboratory Measurements to Global Climate Models

Aerosol particles in the lower atmosphere exert a substantial influence on climate and climate change through a variety of complex mechanisms. Consequently, there is a need to represent these influences in global climate models, and models have begun to include representations of these influences. However, the present treatment of aerosols in global climate models is highly simplified, omitting many processes and feedbacks that are thought to be climatically important. Thus, there is need for substantial improvement. Here we describe the strategy of the U.S. Department of Energy for improving representation of the properties, processes, and effects of tropospheric aerosols in global climate models. The strategy begins with a foundation of field and laboratory measurements that provide the basis for modules describing specific aerosol properties and processes. These modules are then integrated into regional aerosol models, which are evaluated by comparison with field measurements. Issues of scale are then ...

[1]  P. Rasch,et al.  Sulfur Chemistry in the Ncar Ccm: Description, Evaluation, Features and Sensitivity to Aqueous Chemistry , 2007 .

[2]  V. Ramaswamy,et al.  Evaluation of aerosol distribution and optical depth in the Geophysical Fluid Dynamics Laboratory coupled model CM2.1 for present climate , 2006 .

[3]  L. Horowitz Past, present, and future concentrations of tropospheric ozone and aerosols: Methodology, ozone evaluation, and sensitivity to aerosol wet removal , 2006 .

[4]  M. Molina,et al.  Secondary organic aerosol formation from anthropogenic air pollution: Rapid and higher than expected , 2006 .

[5]  Reinhard Beer,et al.  Overview of the EOS aura mission , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[6]  G. Schmidt,et al.  Sulfur, sea salt, and radionuclide aerosols in GISS ModelE , 2006 .

[7]  J. Hudson,et al.  Coupling aerosol size distributions and size-resolved hygroscopicity to predict humidity-dependent optical properties and cloud condensation nuclei spectra , 2006 .

[8]  R. Ferrare,et al.  Application of aerosol hygroscopicity measured at the Atmospheric Radiation Measurement Program's Southern Great Plains site to examine composition and evolution , 2006 .

[9]  H. Jonsson,et al.  Comparison of in situ aerosol extinction and scattering coefficient measurements made during the Aerosol Intensive Operating Period , 2006 .

[10]  Beat Schmid,et al.  Evaluation of daytime measurements of aerosols and water vapor made by an operational Raman lidar over the Southern Great Plains , 2006 .

[11]  Alexander Smirnov,et al.  How well do State-of-the-Art Techniques Measuring the Vertical Profile of Tropospheric Aerosol Extinction Compare? , 2006 .

[12]  Martin J. Iedema,et al.  Analysis of Individual Environmental Particles Using Modern Methods of Electron Microscopy and X-Ray Microanalysis , 2006 .

[13]  V. Canuto,et al.  Present-Day Atmospheric Simulations Using GISS ModelE: Comparison to In Situ, Satellite, and Reanalysis Data , 2006 .

[14]  O. Boucher,et al.  Global estimate of aerosol direct radiative forcing from satellite measurements , 2005, Nature.

[15]  J. Smith,et al.  A criterion for new particle formation in the sulfur-rich Atlanta atmosphere , 2005 .

[16]  M. Molina,et al.  Processing of soot in an urban environment: case study from the Mexico City Metropolitan Area , 2005 .

[17]  J. Spinhirne,et al.  Cloud and aerosol measurements from GLAS: Overview and initial results , 2005 .

[18]  C. Twohy,et al.  Nitrogenated organic aerosols as cloud condensation nuclei , 2005 .

[19]  Barry J. Huebert,et al.  A large organic aerosol source in the free troposphere missing from current models , 2005 .

[20]  J. Penner,et al.  Global modeling of aerosol dynamics: Model description, evaluation, and interactions between sulfate and nonsulfate aerosols , 2005 .

[21]  J. Hansen,et al.  Efficacy of climate forcings , 2005 .

[22]  W. Collins,et al.  An AeroCom initial assessment – optical properties in aerosol component modules of global models , 2018 .

[23]  Robert Wood,et al.  Drizzle in Stratiform Boundary Layer Clouds. Part II: Microphysical Aspects. , 2005 .

[24]  S. Martin,et al.  Phase Transitions of Single Salt Particles Studied Using a Transmission Electron Microscope with an Environmental Cell , 2005 .

[25]  J. Seinfeld,et al.  Evaluation of a new cloud droplet activation parameterization with in situ data from CRYSTAL‐FACE and CSTRIPE , 2005 .

[26]  S. Ghan,et al.  Parallel simulations of aerosol influence on clouds using cloud‐resolving and single‐column models , 2005 .

[27]  Athanasios Nenes,et al.  Continued development of a cloud droplet formation parameterization for global climate models , 2005 .

[28]  P. Daum,et al.  Size truncation effect, threshold behavior, and a new type of autoconversion parameterization , 2005 .

[29]  Alla Zelenyuk,et al.  Single Particle Laser Ablation Time-of-Flight Mass Spectrometer: An Introduction to SPLAT , 2005 .

[30]  Kimberly A Prather,et al.  Recent advances in our understanding of atmospheric chemistry and climate made possible by on-line aerosol analysis instrumentation. , 2005, Analytical chemistry.

[31]  Qi Zhang,et al.  Time- and size-resolved chemical composition of submicron particles in Pittsburgh: Implications for aerosol sources and processes , 2005 .

[32]  Paul Ginoux,et al.  Assessment of the global impact of aerosols on tropospheric oxidants , 2005 .

[33]  W. Patrick Arnott,et al.  Evaluation of Multiangle Absorption Photometry for Measuring Aerosol Light Absorption , 2005 .

[34]  K. Salzen Interactive comment on “ Piecewise log-normal approximation of size distributionsfor aerosol modelling ” by K . von Salzen , 2005 .

[35]  David M. Winker,et al.  Status and performance of the CALIOP lidar , 2004, SPIE Remote Sensing.

[36]  Xindi Bian,et al.  MIRAGE: Model description and evaluation of aerosols and trace gases , 2004 .

[37]  Albert Ansmann,et al.  Multiyear aerosol observations with dual‐wavelength Raman lidar in the framework of EARLINET , 2004 .

[38]  J. Seinfeld,et al.  Aerosol–cloud drop concentration closure in warm cumulus , 2004 .

[39]  Edward Charles Fortner,et al.  Atmospheric New Particle Formation Enhanced by Organic Acids , 2004, Science.

[40]  Andrey Khlystov,et al.  Ambient aerosol size distributions and number concentrations measured during the Pittsburgh Air Quality Study (PAQS) , 2004 .

[41]  Robert McGraw,et al.  Representation of generally mixed multivariate aerosols by the quadrature method of moments: II. Aerosol dynamics , 2004 .

[42]  K. Froyd,et al.  Atmospheric ion‐induced nucleation of sulfuric acid and water , 2004 .

[43]  R. Ferrare,et al.  In situ aerosol profiles over the Southern Great Plains cloud and radiation test bed site: 1. Aerosol optical properties , 2004 .

[44]  William C. Malm,et al.  Spatial and monthly trends in speciated fine particle concentration in the United States , 2004 .

[45]  K. Prather,et al.  Development and characterization of an aerosol time-of-flight mass spectrometer with increased detection efficiency. , 2004, Analytical chemistry.

[46]  P. Mcmurry,et al.  Particulate matter science for policy makers : a NARSTO assessment , 2004 .

[47]  Young-Joon Kim,et al.  An overview of ACE‐Asia: Strategies for quantifying the relationships between Asian aerosols and their climatic impacts , 2003 .

[48]  Sonoyo Mukai,et al.  A study of the direct and indirect effects of aerosols using global satellite data sets of aerosol and cloud parameters , 2003 .

[49]  C. Timmreck,et al.  Monthly Averages of Aerosol Properties: A Global Comparison Among Models, Satellite Data, and AERONET Ground Data , 2003 .

[50]  John C. Gille,et al.  Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission: Design, execution, and first results , 2003 .

[51]  J. Bassis,et al.  OH and HO2 concentrations, sources, and loss rates during the Southern Oxidants Study in Nashville, Tennessee, summer 1999 , 2003 .

[52]  J. Spinhirne,et al.  The Micro-Pulse Lidar Network (MPL-Net) , 2003 .

[53]  J. Bösenberg,et al.  EARLINET: A European Aerosol Research Lidar Network to Establish an Aerosol Climatology , 2003 .

[54]  Yoram J. Kaufman,et al.  Retrievals of profiles of fine and coarse aerosols using lidar and radiometric space measurements , 2003, IEEE Trans. Geosci. Remote. Sens..

[55]  P. T. Palmer,et al.  Proton transfer reaction ion trap mass spectrometer. , 2003, Rapid communications in mass spectrometry : RCM.

[56]  John H. Marburger,et al.  Strategic Plan for the U.S. Climate Change Science Program , 2003 .

[57]  M. Komppula,et al.  Observations of new particle formation and size distributions at two different heights and surroundings in subarctic area in northern Finland , 2003 .

[58]  David T Wu,et al.  Kinetic extensions of the nucleation theorem , 2003 .

[59]  Anthony W. Strawa,et al.  The Measurement of Aerosol Optical Properties Using Continuous Wave Cavity Ring-Down Techniques , 2003 .

[60]  Tom M. L. Wigley,et al.  Solar and Greenhouse Gas Forcing and Climate Response in the Twentieth Century , 2003 .

[61]  J. Seinfeld,et al.  New particle formation from photooxidation of diiodomethane ( CH 2 I 2 ) , 2003 .

[62]  R. W. Dissly,et al.  Results from an informal intercomparison of ammonia measurement techniques , 2002 .

[63]  Beat Schmid,et al.  Clear-Column Radiative Closure During ACE-Asia: Comparison of Multiwavelength Extinction Derived from Particle Size and Composition with Results from Sun Photometry , 2002 .

[64]  M. Ebert,et al.  Environmental scanning electron microscopy as a new technique to determine the hygroscopic behaviour of individual aerosol particles , 2002 .

[65]  E. O'connor,et al.  The CloudSat mission and the A-train: a new dimension of space-based observations of clouds and precipitation , 2002 .

[66]  C. Timmreck,et al.  An improved parameterization for sulfuric acid-water nucleation rates for tropospheric and stratospheric conditions , 2002 .

[67]  Steven J. Ghan,et al.  Impact of aerosol size representation on modeling aerosol‐cloud interactions , 2002 .

[68]  John H. Seinfeld,et al.  Predicting global aerosol size distributions in general circulation models , 2002 .

[69]  G. Cass,et al.  INDOEX aerosol: A comparison and summary of chemical, microphysical, and optical properties observed from land, ship, and aircraft , 2002 .

[70]  J. Seinfeld,et al.  Global distribution and climate forcing of carbonaceous aerosols , 2002 .

[71]  J. Nowak,et al.  Chemical ionization mass spectrometry technique for detection of dimethylsulfoxide and ammonia , 2002 .

[72]  John Hallett,et al.  Light-scattering properties of plate and column ice crystals generated in a laboratory cold chamber. , 2002, Applied optics.

[73]  O. Boucher,et al.  A satellite view of aerosols in the climate system , 2002, Nature.

[74]  D. C. Hill,et al.  Estimation of natural and anthropogenic contributions to twentieth century temperature change , 2002 .

[75]  M. Kulmala,et al.  An improved model for ternary nucleation of sulfuric acid–ammonia–water , 2002 .

[76]  David D. Turner,et al.  Average aerosol extinction and water vapor profiles over the Southern Great Plains , 2001 .

[77]  J. Hudson,et al.  Characteristics of cloud‐nucleating aerosols in the Indian Ocean region , 2001 .

[78]  L. S. Hughes,et al.  Closure between aerosol particles and cloud condensation nuclei at Kaashidhoo Climate Observatory , 2001 .

[79]  D. Althausen,et al.  Comprehensive particle characterization from three-wavelength Raman-lidar observations: case study. , 2001, Applied optics.

[80]  S. Schwartz,et al.  Description and evaluation of a six‐moment aerosol microphysical module for use in atmospheric chemical transport models , 2001 .

[81]  P. Mcmurry,et al.  Novel measurements of atmospheric aerosol properties , 2001 .

[82]  James G. Hudson,et al.  Evaluation of aerosol direct radiative forcing in MIRAGE , 2001 .

[83]  M. Jacobson Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols , 2001 .

[84]  Da-Ren Chen,et al.  Measurement of Atlanta Aerosol Size Distributions: Observations of Ultrafine Particle Events , 2001 .

[85]  Rodney J. Weber,et al.  A Particle-into-Liquid Collector for Rapid Measurement of Aerosol Bulk Chemical Composition , 2001 .

[86]  R. Fletcher,et al.  Chapter 12: Analysis of Individual Collected Particles | NIST , 2001 .

[87]  P. Stott,et al.  External control of 20th century temperature by natural and anthropogenic forcings. , 2000, Science.

[88]  Michael D. King,et al.  A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements , 2000 .

[89]  Yangang Liu,et al.  THE EFFECT OF REFRACTIVE INDEX ON SIZE DISTRIBUTIONS AND LIGHT SCATTERING COEFFICIENTS DERIVED FROM OPTICAL PARTICLE COUNTERS , 2000 .

[90]  David S. Thomson,et al.  Particle Analysis by Laser Mass Spectrometry WB-57F Instrument Overview , 2000 .

[91]  Kenneth A. Smith,et al.  Development of an Aerosol Mass Spectrometer for Size and Composition Analysis of Submicron Particles , 2000 .

[92]  T. Delworth,et al.  Simulation of early 20th century global warming , 2000, Science.

[93]  P. Mcmurry,et al.  Estimation of water uptake by organic compounds in submicron aerosols measured during the Southeastern Aerosol and Visibility Study , 2000 .

[94]  Frank McGovern,et al.  The 2nd Aerosol Characterization Experiment (ACE-2): general overview and main results , 2000 .

[95]  Reinhard F. Bruch,et al.  Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description , 1999 .

[96]  Erik Swietlicki,et al.  A closure study of sub-micrometer aerosol particle hygroscopic behaviour , 1999 .

[97]  P. Mcmurry,et al.  New Particle Formation in the Remote Troposphere: A Comparison of Observations at Various Sites , 1999 .

[98]  B. Holben,et al.  Smoke, Clouds, and Radiation-Brazil (SCAR-B) Experiment , 1998 .

[99]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[100]  Barry J. Huebert,et al.  International Global Atmospheric Chemistry (IGAC) Project's First Aerosol Characterization Experiment (ACE 1): Overview , 1998 .

[101]  S. Kreidenweis,et al.  Simulations of sulfate aerosol dynamics—I: Model description , 1998 .

[102]  Steven J. Ghan,et al.  A parameterization of aerosol activation: 1. Single aerosol type , 1998 .

[103]  J. Goldsmith,et al.  Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols. , 1997, Applied optics.

[104]  L. Ruby Leung,et al.  Prediction of cloud droplet number in a general , 1997 .

[105]  Robert McGraw,et al.  Description of Aerosol Dynamics by the Quadrature Method of Moments , 1997 .

[106]  Peter H. McMurry,et al.  Modal Aerosol Dynamics Modeling , 1997 .

[107]  J. Hudson,et al.  Volatility and size of cloud condensation nuclei , 1996 .

[108]  J. M. Gregory,et al.  Climate response to increasing levels of greenhouse gases and sulphate aerosols , 1995, Nature.

[109]  Richard N. Zare,et al.  Cavity ring-down spectroscopy for quantitative absorption measurements , 1995 .

[110]  J. Penner,et al.  Quantifying and minimizing uncertainty of climate forcing by anthropogenic aerosols , 1994 .

[111]  J. W. Fitzgerald,et al.  A Cloud Chamber Study of the Effect That Nonprecipitating Water Clouds Have on the Aerosol Size Distribution , 1994 .

[112]  Judith C. Chow,et al.  The dri thermal/optical reflectance carbon analysis system: description, evaluation and applications in U.S. Air quality studies , 1993 .

[113]  H. Berresheim,et al.  High-pressure chemical ionization flow reactor for real-time mass spectrometric detection of sulfur gases and unsaturated hydrocarbons in air , 1992 .

[114]  Peter H. McMurry,et al.  An Ultrafine Aerosol Condensation Nucleus Counter , 1991 .

[115]  J. W. Fitzgerald,et al.  Aerosol size distributions and optical properties found in the marine boundary layer over the Atlantic Ocean , 1990 .

[116]  J. Hudson An Instantaneous CCN Spectrometer , 1989 .

[117]  M. Stolzenburg,et al.  On the sensitivity of particle size to relative humidity for Los Angeles aerosols , 1989 .

[118]  Richard C. Flagan,et al.  Scanning Electrical Mobility Spectrometer , 1989 .

[119]  A. Jaecker-Voirol,et al.  Heteromolecular nucleation in the sulfuric acid-water system , 1989 .

[120]  David S. Covert,et al.  Design and Calibration of a Counterflow Virtual Impactor for Sampling of Atmospheric Fog and Cloud Droplets , 1988 .

[121]  Donald H. Lenschow,et al.  Aircraft measurements in the boundary layer , 1986 .

[122]  D. Rader,et al.  Application of the tandem differential mobility analyzer to studies of droplet growth or evaporation , 1986 .

[123]  E. Eloranta,et al.  High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: theory and instrumentation. , 1983, Applied optics.

[124]  T. Novakov,et al.  The aethalometer — An instrument for the real-time measurement of optical absorption by aerosol particles , 1983 .

[125]  K. T. Whitby THE PHYSICAL CHARACTERISTICS OF SULFUR AEROSOLS , 1978 .

[126]  K. T. Whitby,et al.  Aerosol classification by electric mobility: apparatus, theory, and applications , 1975 .

[127]  P. Russell,et al.  Complex Index of Refraction of Airborne Soil Particles , 1974 .

[128]  M. Betigeri PROTON TRANSFER REACTION ON $sup 66$Zn. , 1969 .