Output feedback control with almost disturbance decoupling property: A singular perturbation approach

A high-gain observer-based control law for minimum-phase linear systems is proposed. This control law provides internal stability for the closed-loop system and has almost disturbance decoupling property, that is, the influence of the disturbances on the controlled output can be made arbitrarily small.

[1]  M. Araki Stability of large-scale nonlinear systems--Quadratic-order theory of composite-system method using M-matrices , 1978 .

[2]  H. Trentelman,et al.  On the assignability of infinite root loci in almost disturbance decoupling , 1983 .

[3]  P. Sannuti,et al.  A singular perturbation canonical form of invertible systems: determination of multivariate root-loci , 1983 .

[4]  J. Willems Almost invariant subspaces: An approach to high gain feedback design--Part II: Almost conditionally invariant subspaces , 1981 .

[5]  P. Sannuti,et al.  Singular perturbation analysis of cheap control problems , 1983, The 22nd IEEE Conference on Decision and Control.

[6]  Jan C. Willems,et al.  Decentralized stabilization of large-scale interconnected systems , 1984 .

[7]  K. D. Young,et al.  Disturbance decoupling by high gain feedback , 1982 .

[8]  B. Scherzinger,et al.  Generalized error coefficients for the multivariable servomechanism problem , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[9]  M. Vidyasagar,et al.  Qualitative Analysis of Large Scale Dynamical Systems , 2012, IEEE Transactions on Systems, Man, and Cybernetics.

[10]  Hajime Akashi,et al.  Disturbance localization and output deadbeat control through an observer in discrete-time linear multivariable systems , 1979 .

[11]  J. Schumacher Compensator synthesis using (C,A,B)-pairs , 1980 .

[12]  E. Davison,et al.  Properties and calculation of transmission zeros of linear multivariable systems , 1974, Autom..

[13]  Petar V. Kokotovic,et al.  Singular perturbations and time-scale methods in control theory: Survey 1976-1983 , 1982, Autom..

[14]  Hidenori Kimura,et al.  Perfect and subperfect regulation in linear multivariable control systems , 1981, Autom..

[15]  Peter Dorato,et al.  On the Inverse of Linear Dynamical Systems , 1969, IEEE Trans. Syst. Sci. Cybern..

[16]  Jan C. Willems,et al.  Guaranteed roll-off in a class of high-gain feedback design problems , 1983 .

[17]  J. Willems,et al.  Disturbance Decoupling by Measurement Feedback with Stability or Pole Placement , 1981 .

[18]  E. Davison,et al.  Robust control of a general servomechanism problem: The servo compensator , 1975, Autom..

[19]  A. Morse Structural Invariants of Linear Multivariable Systems , 1973 .

[20]  M. Vidyasagar,et al.  New relationships between input-output and Lyapunov stability , 1982 .