A Cognitive Architecture for Artificial Vision

Abstract A new cognitive architecture for artificial vision is proposed. The architecture, aimed at an autonomous intelligent system, is cognitive in the sense that several cognitive hypotheses have been postulated as guidelines for its design. The first one is the existence of a conceptual representation level between the subsymbolic level, that processes sensory data, and the linguistic level, that describes scenes by means of a high level language. The conceptual level plays the role of the interpretation domain for the symbols at the linguistic levels. A second cognitive hypothesis concerns the active role of a focus of attention mechanism in the link between the conceptual and the linguistic level: the exploration process of the perceived scene is driven by linguistic and associative expectations. This link is modeled as a time delay attractor neural network. Results are reported obtained by an experimental implementation of the architecture.

[1]  Azriel Rosenfeld,et al.  From volumes to views: An approach to 3-D object recognition , 1992, CVGIP Image Underst..

[2]  P. Gärdenfors Three levels of inductive inference , 1995 .

[3]  Ronald J. Brachman,et al.  An Overview of the KL-ONE Knowledge Representation System , 1985, Cogn. Sci..

[4]  Setsuo Ohsuga,et al.  Information Modelling and Knowledge Bases , 1990 .

[5]  B. Tversky,et al.  Objects, parts, and categories. , 1984 .

[6]  Ruzena Bajcsy,et al.  Recovery of Parametric Models from Range Images: The Case for Superquadrics with Global Deformations , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  M. Tarr,et al.  Mental rotation and orientation-dependence in shape recognition , 1989, Cognitive Psychology.

[8]  R. Hursthouse THE LOGIC OF DECISION AND ACTION , 1969 .

[9]  Thomas O. Binford,et al.  Survey of Model-Based Image Analysis Systems , 1982 .

[10]  Ruzena Bajcsy,et al.  Occlusions as a Guide for Planning the Next View , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Ramakant Nevatia,et al.  Description and Recognition of Curved Objects , 1977, Artif. Intell..

[12]  Haim Sompolinsky,et al.  Associative network models for central pattern generators , 1989 .

[13]  M. Bertero,et al.  Ill-posed problems in early vision , 1988, Proc. IEEE.

[14]  Franc Solina,et al.  A Direct Recovery of Superquadric Models in Range Images Using Recover-and-Select Paradigm , 1994, ECCV.

[15]  Nicholas Rescher,et al.  The Logic of Decision and Action , 1967 .

[16]  Rodney A. Brooks,et al.  Symbolic Reasoning Among 3-D Models and 2-D Images , 1981, Artif. Intell..

[17]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[18]  Daniel J. Amit,et al.  Modeling brain function: the world of attractor neural networks, 1st Edition , 1989 .

[19]  Massimo Paolucci,et al.  Some problems on uncertain knowledge acquisition for rule based systems , 1988, Decis. Support Syst..

[20]  M. Posner,et al.  Orienting of Attention* , 1980, The Quarterly journal of experimental psychology.

[21]  Edoardo Ardizzone,et al.  Geometric and conceptual knowledge representation within a generative model of visual perception , 1989, J. Intell. Robotic Syst..

[22]  Peter Gärdenfors,et al.  A Geometric Model of Concept Formation , 1992 .

[23]  B. Bergum,et al.  Attention and performance IX , 1982 .

[24]  Barr,et al.  Superquadrics and Angle-Preserving Transformations , 1981, IEEE Computer Graphics and Applications.

[25]  J. Jonides Voluntary versus automatic control over the mind's eye's movement , 1981 .

[26]  John K. Tsotsos,et al.  Modeling Visual Attention via Selective Tuning , 1995, Artif. Intell..

[27]  Daniel J. Amit Modeling brain function: Introduction , 1989 .

[28]  Demetri Terzopoulos,et al.  Constraints on Deformable Models: Recovering 3D Shape and Nonrigid Motion , 1988, Artif. Intell..

[29]  Ruzena Bajcsy,et al.  Active and exploratory perception , 1992, CVGIP Image Underst..

[30]  Alex Pentland,et al.  Perceptual Organization and the Representation of Natural Form , 1986, Artif. Intell..

[31]  D. Marr,et al.  Representation and recognition of the spatial organization of three-dimensional shapes , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[32]  D. Levine,et al.  Visual and spatial mental imagery: Dissociable systems of representation , 1988, Cognitive Psychology.

[33]  Christopher Cherniak,et al.  Minimal Rationality , 1986, Computational models of cognition and perception.

[34]  Ruzena Bajcsy,et al.  Volumetric segmentation of range images of 3D objects using superquadric models , 1993 .

[35]  Alex Pentland,et al.  Closed-form solutions for physically-based shape modeling and recognition , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[36]  John K. Tsotsos Knowledge organization and its role in representation and interpretation for time‐varying data: the ALVEN system , 1985, Comput. Intell..

[37]  Bernhard Nebel,et al.  Reasoning and Revision in Hybrid Representation Systems , 1990, Lecture Notes in Computer Science.

[38]  Charles R. Dyer,et al.  Model-based recognition in robot vision , 1986, CSUR.

[39]  Ramesh C. Jain,et al.  Three-dimensional object recognition , 1985, CSUR.

[40]  H. Barrow,et al.  Computational vision , 1981, Proceedings of the IEEE.

[41]  Peter J. Burt,et al.  Smart sensing within a pyramid vision machine , 1988, Proc. IEEE.

[42]  Mubarak Shah,et al.  Shape from shading using linear approximation , 1994, Image Vis. Comput..

[43]  Dimitris N. Metaxas,et al.  Dynamic 3D models with local and global deformations: deformable superquadrics , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[44]  I. Biederman Human image understanding: Recent research and a theory , 1985, Computer Vision Graphics and Image Processing.

[45]  Dana H. Ballard,et al.  Animate Vision , 1991, Artif. Intell..

[46]  David Lee,et al.  Some computational aspects of low-level computer vision , 1988, Proc. IEEE.

[47]  Steven W. Zucker,et al.  Region growing: Childhood and adolescence* , 1976 .

[48]  Philip E. Agre,et al.  Computational Research on Interaction and Agency , 1995, Artif. Intell..

[49]  John J. Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities , 1999 .

[50]  Harry G. Barrow,et al.  Scene modeling: a structural basis for image description , 1980 .

[51]  Frank P. Ferrie,et al.  From Uncertainty to Visual Exploration , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[52]  Y. Aloimonos,et al.  Visual shape computation , 1988, Proc. IEEE.

[53]  R. Bajcsy Active perception , 1988 .

[54]  P. Johnson-Laird Mental models , 1989 .

[55]  Rodney A. Brooks,et al.  Model-Based Three-Dimensional Interpretations of Two-Dimensional Images , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[56]  Lawrence Birnbaum,et al.  Looking for trouble: Using causal semantics to direct focus of attention , 1993, 1993 (4th) International Conference on Computer Vision.

[57]  Baba C. Vemuri,et al.  On Three-Dimensional Surface Reconstruction Methods , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[58]  Idan Segev,et al.  Methods in Neuronal Modeling , 1988 .

[59]  S. Kosslyn Image and mind , 1982 .

[60]  Jon Doyle,et al.  Doyle See Infer Choose Do Perceive Act , 2009 .

[61]  Kai-Uwe Carstensen,et al.  Modelling Spatial Knowledge on a Linguistic Basis , 1990, Lecture Notes in Computer Science.

[62]  Alex Pentland,et al.  Closed-Form Solutions for Physically Based Shape Modeling and Recognition , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[63]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[64]  Peter Gärdenfors,et al.  Meanings as Conceptual Structures , 1995 .

[65]  Requicha,et al.  Solid Modeling: A Historical Summary and Contemporary Assessment , 1982, IEEE Computer Graphics and Applications.

[66]  J. Duncan,et al.  Visual search and stimulus similarity. , 1989, Psychological review.

[67]  Patrick Suppes,et al.  Logic, Methodology and Philosophy of Science , 1963 .

[68]  Geoffrey E. Hinton,et al.  Distributed Representations , 1986, The Philosophy of Artificial Intelligence.

[69]  S. GAGLIO,et al.  VISUAL PERCEPTION: AN OUTLINE OF A GENERATIVE THEORY OF INFORMATION FLOW ORGANIZATION , 1984 .

[70]  D Kleinfeld,et al.  Sequential state generation by model neural networks. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[71]  Jake K. Aggarwal,et al.  Identification of 3D objects from multiple silhouettes using quadtrees/octrees , 1985, Comput. Vis. Graph. Image Process..