Electron paramagnetic resonance spectroscopy using a single artificial atom

[1]  W. Munro,et al.  Electron paramagnetic resonance spectroscopy of Er3+:Y2SiO5 using a Josephson bifurcation amplifier: Observation of hyperfine and quadrupole structures , 2017, 1710.10801.

[2]  J. Barreda,et al.  Sensitive spin detection using an on-chip SQUID-waveguide resonator , 2017, 1710.10506.

[3]  J. Morton,et al.  Inductive-detection electron-spin resonance spectroscopy with 65 spins/ Hz sensitivity , 2017, 1708.09287.

[4]  J. Petta,et al.  Electron Spin Resonance at the Level of 10^{4} Spins Using Low Impedance Superconducting Resonators. , 2016, Physical review letters.

[5]  F. Reinhard,et al.  Quantum sensing , 2016, 1611.02427.

[6]  J. Morton,et al.  Magnetic resonance with squeezed microwaves , 2016, 1610.03329.

[7]  Xiaobo Zhu,et al.  Electron paramagnetic resonance spectroscopy using a direct current-SQUID magnetometer directly coupled to an electron spin ensemble , 2015, 1511.04832.

[8]  J. Clarke,et al.  The flux qubit revisited to enhance coherence and reproducibility , 2015, Nature Communications.

[9]  C. C. Lo,et al.  Controlling spin relaxation with a cavity , 2015, Nature.

[10]  J. Morton,et al.  Reaching the quantum limit of sensitivity in electron spin resonance. , 2015, Nature nanotechnology.

[11]  G Catelani,et al.  Flux qubits with long coherence times for hybrid quantum circuits. , 2014, Physical review letters.

[12]  W. Munro,et al.  Observation of dark states in a superconductor diamond quantum hybrid system , 2014, Nature Communications.

[13]  Eli Zeldov,et al.  A scanning superconducting quantum interference device with single electron spin sensitivity. , 2013, Nature nanotechnology.

[14]  W. Munro,et al.  Towards realizing a quantum memory for a superconducting qubit: storage and retrieval of quantum states. , 2013, Physical review letters.

[15]  C. Deng,et al.  Ultrasensitive magnetic field detection using a single artificial atom , 2012, Nature Communications.

[16]  Alex W Chin,et al.  Quantum metrology in non-Markovian environments. , 2011, Physical review letters.

[17]  J Wrachtrup,et al.  High-dynamic-range magnetometry with a single nuclear spin in diamond. , 2012, Nature nanotechnology.

[18]  Kae Nemoto,et al.  Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond , 2011, Nature.

[19]  J. Cole,et al.  Ultralow-power spectroscopy of a rare-earth spin ensemble using a superconducting resonator , 2011 .

[20]  J. Schmiedmayer,et al.  Cavity QED with magnetically coupled collective spin states. , 2011, Physical review letters.

[21]  Joseph Fitzsimons,et al.  Magnetic field sensing beyond the standard quantum limit under the effect of decoherence , 2011, 1101.2561.

[22]  Xiaobo Zhu,et al.  Coherent Operation of a Gap-tunable Flux Qubit , 2010, 1008.4016.

[23]  J Wrachtrup,et al.  Strong coupling of a spin ensemble to a superconducting resonator. , 2010, Physical review letters.

[24]  A S Sørensen,et al.  Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits. , 2010, Physical review letters.

[25]  Rufus L. Cone,et al.  Magnetic G Tensors for the I 15/2 4 and I 13/2 4 States of Er3+: Y2 Si O5 , 2008 .

[26]  C. Thiel,et al.  Magnetic g tensors for the 4I15∕ 2 and 4I13∕ 2 states of Er3+:Y2SiO5 , 2008 .

[27]  M. Mariantoni,et al.  Phase-Coherent Dynamics of a Superconducting Flux Qubit with Capacitive-Bias Readout , 2007, 0710.4455.

[28]  E. Il'ichev,et al.  Flux qubit as a sensor of magnetic flux , 2007 .

[29]  P. Monnier,et al.  Hyperfine interaction of Er3+ ions in Y2SiO5 : An electron paramagnetic resonance spectroscopy study , 2006 .

[30]  E. Il'ichev,et al.  Flux qubit as a sensor for a magnetometer with quantum limited sensitivity , 2006, cond-mat/0608416.

[31]  Matthew Sellars,et al.  Measurement of the optically induced spin polarisation of N-V centres in diamond , 2006 .

[32]  D. Mailly,et al.  Resonant photon absorption and hole burning in Cr7Ni antiferromagnetic rings , 2005, cond-mat/0504416.

[33]  B. Chui,et al.  Single spin detection by magnetic resonance force microscopy , 2004, Nature.

[34]  D. Mailly,et al.  Resonant photon absorption in the low-spin molecule V15 , 2004, cond-mat/0404410.

[35]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[36]  L Frunzio,et al.  An RF-Driven Josephson Bifurcation Amplifier for Quantum Measurements , 2003, cond-mat/0312623.

[37]  W. Wernsdorfer Classical and Quantum Magnetization Reversal Studied in Nanometer-Sized Particles and Clusters , 2001, cond-mat/0101104.

[38]  Gunnar Jeschke,et al.  Principles of pulse electron paramagnetic resonance , 2001 .

[39]  F K Wilhelm,et al.  Quantum superposition of macroscopic persistent-current states. , 2000, Science.

[40]  Seth Lloyd,et al.  Superconducting persistent-current qubit , 1999, cond-mat/9908283.

[41]  L. Moberly,et al.  High-sensitivity magnetic resonance by SQUID detection , 1979 .

[42]  J H N Loubser,et al.  REVIEW: Electron spin resonance in the study of diamond , 1978 .

[43]  G. J. Dolan,et al.  Offset masks for lift‐off photoprocessing , 1977 .