Central chemoreceptors: locations and functions.

Central chemoreception traditionally refers to a change in ventilation attributable to changes in CO2/H(+) detected within the brain. Interest in central chemoreception has grown substantially since the previous Handbook of Physiology published in 1986. Initially, central chemoreception was localized to areas on the ventral medullary surface, a hypothesis complemented by the recent identification of neurons with specific phenotypes near one of these areas as putative chemoreceptor cells. However, there is substantial evidence that many sites participate in central chemoreception some located at a distance from the ventral medulla. Functionally, central chemoreception, via the sensing of brain interstitial fluid H(+), serves to detect and integrate information on (i) alveolar ventilation (arterial PCO2), (ii) brain blood flow and metabolism, and (iii) acid-base balance, and, in response, can affect breathing, airway resistance, blood pressure (sympathetic tone), and arousal. In addition, central chemoreception provides a tonic "drive" (source of excitation) at the normal, baseline PCO2 level that maintains a degree of functional connectivity among brainstem respiratory neurons necessary to produce eupneic breathing. Central chemoreception responds to small variations in PCO2 to regulate normal gas exchange and to large changes in PCO2 to minimize acid-base changes. Central chemoreceptor sites vary in function with sex and with development. From an evolutionary perspective, central chemoreception grew out of the demands posed by air versus water breathing, homeothermy, sleep, optimization of the work of breathing with the "ideal" arterial PCO2, and the maintenance of the appropriate pH at 37°C for optimal protein structure and function.

[1]  Russell S. Ray,et al.  Impaired Respiratory and Body Temperature Control Upon Acute Serotonergic Neuron Inhibition , 2011, Science.

[2]  J. Dean Theory of gastric CO2 ventilation and its control during respiratory acidosis: Implications for central chemosensitivity, pH regulation, and diseases causing chronic CO2 retention , 2011, Respiratory Physiology & Neurobiology.

[3]  R. Stornetta,et al.  Photostimulation of Phox2b medullary neurons activates cardiorespiratory function in conscious rats. , 2010, American journal of respiratory and critical care medicine.

[4]  E. Nattie,et al.  State-dependent central chemoreception: A role of orexin , 2010, Respiratory Physiology & Neurobiology.

[5]  J. Leiter,et al.  ATP, glia and central respiratory control , 2010, Respiratory Physiology & Neurobiology.

[6]  R. Putnam,et al.  The locus coeruleus and central chemosensitivity , 2010, Respiratory Physiology & Neurobiology.

[7]  J. Dempsey,et al.  An interdependent model of central/peripheral chemoreception: Evidence and implications for ventilatory control , 2010, Respiratory Physiology & Neurobiology.

[8]  H. Forster,et al.  Special Issue on Central Chemoreception. Foreword. , 2010, Respiratory physiology & neurobiology.

[9]  K. Deisseroth,et al.  Tuning arousal with optogenetic modulation of locus coeruleus neurons , 2010, Nature Neuroscience.

[10]  Robert T. R. Huckstepp,et al.  Connexin hemichannel‐mediated CO2‐dependent release of ATP in the medulla oblongata contributes to central respiratory chemosensitivity , 2010, The Journal of physiology.

[11]  D. Bayliss,et al.  Central respiratory chemoreception , 2010, The Journal of comparative neurology.

[12]  Jeffrey C. Smith,et al.  Essential Role of Phox2b-Expressing Ventrolateral Brainstem Neurons in the Chemosensory Control of Inspiration and Expiration , 2010, The Journal of Neuroscience.

[13]  G. Richerson,et al.  Central serotonin neurons are required for arousal to CO2 , 2010, Proceedings of the National Academy of Sciences.

[14]  E. Nattie,et al.  Antagonism of rat orexin receptors by almorexant attenuates central chemoreception in wakefulness in the active period of the diurnal cycle , 2010, The Journal of physiology.

[15]  K. Deisseroth,et al.  Astrocytes Control Breathing Through pH-Dependent Release of ATP , 2010, Science.

[16]  J. Leiter,et al.  Glia modulation of the extracellular milieu as a factor in central CO2 chemosensitivity and respiratory control. , 2010, Journal of applied physiology.

[17]  I. Wenker,et al.  Current ideas on central chemoreception by neurons and glial cells in the retrotrapezoid nucleus. , 2010, Journal of applied physiology.

[18]  E. Nattie,et al.  High CO2/H+ dialysis in the caudal ventrolateral medulla (Loeschcke's area) increases ventilation in wakefulness , 2010, Respiratory Physiology & Neurobiology.

[19]  R. Stornetta,et al.  Central CO2 chemoreception and integrated neural mechanisms of cardiovascular and respiratory control. , 2010, Journal of applied physiology.

[20]  E. Deneris,et al.  Bradycardia in serotonin-deficient Pet-1-/- mice: influence of respiratory dysfunction and hyperthermia over the first 2 postnatal weeks. , 2010, American journal of physiology. Regulatory, integrative and comparative physiology.

[21]  E. Nattie,et al.  Central CO2 chemoreception in cardiorespiratory control. , 2010, Journal of applied physiology.

[22]  E. Nattie,et al.  Central chemoreception in wakefulness and sleep: evidence for a distributed network and a role for orexin. , 2010, Journal of applied physiology.

[23]  H. Kinney,et al.  Brainstem serotonergic deficiency in sudden infant death syndrome. , 2010, JAMA.

[24]  E. Nattie,et al.  The orexin receptor 1 (OX1R) in the rostral medullary raphe contributes to the hypercapnic chemoreflex in wakefulness, during the active period of the diurnal cycle , 2010, Respiratory Physiology & Neurobiology.

[25]  E. Nattie,et al.  Fos-Tau-LacZ mice reveal sex differences in brainstem c-fos activation in response to mild carbon dioxide exposure , 2010, Brain Research.

[26]  R. Putnam CO2 chemoreception in cardiorespiratory control. , 2010, Journal of applied physiology.

[27]  P. Pierson,et al.  Task2 potassium channels set central respiratory CO2 and O2 sensitivity , 2010, Proceedings of the National Academy of Sciences.

[28]  C A Smith,et al.  Contributions of central and peripheral chemoreceptors to the ventilatory response to CO2/H+. , 2010, Journal of applied physiology.

[29]  M. Thoby-Brisson,et al.  Defective Respiratory Rhythmogenesis and Loss of Central Chemosensitivity in Phox2b Mutants Targeting Retrotrapezoid Nucleus Neurons , 2009, The Journal of Neuroscience.

[30]  R. Stornetta,et al.  Activation of the retrotrapezoid nucleus by posterior hypothalamic stimulation , 2009, The Journal of physiology.

[31]  D. Bayliss,et al.  Acid sensitivity and ultrastructure of the retrotrapezoid nucleus in Phox2b‐EGFP transgenic mice , 2009, The Journal of comparative neurology.

[32]  K. Spyer,et al.  Chemosensory pathways in the brainstem controlling cardiorespiratory activity , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[33]  J. Barhanin,et al.  Breathing with Phox2b , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[34]  K. Morris,et al.  Central and peripheral chemoreceptors evoke distinct responses in simultaneously recorded neurons of the raphé-pontomedullary respiratory network , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[35]  D. Bayliss,et al.  Retrotrapezoid nucleus, respiratory chemosensitivity and breathing automaticity , 2009, Respiratory Physiology & Neurobiology.

[36]  G. Fortin,et al.  PHOX2B in respiratory control: Lessons from congenital central hypoventilation syndrome and its mouse models , 2009, Respiratory Physiology & Neurobiology.

[37]  E. Deneris,et al.  Medullary serotonin neurons and central CO2 chemoreception , 2009, Respiratory Physiology & Neurobiology.

[38]  Keiko Ikeda,et al.  Phox2b, RTN/pFRG neurons and respiratory rhythmogenesis , 2009, Respiratory Physiology & Neurobiology.

[39]  Jeffrey C. Smith,et al.  Transgenic Mice Lacking Serotonin Neurons Have Severe Apnea and High Mortality during Development , 2009, The Journal of Neuroscience.

[40]  E. Nattie,et al.  Severe spontaneous bradycardia associated with respiratory disruptions in rat pups with fewer brain stem 5-HT neurons. , 2009, American journal of physiology. Regulatory, integrative and comparative physiology.

[41]  T. Kuwaki,et al.  CO2 activates orexin-containing neurons in mice , 2009, Respiratory Physiology & Neurobiology.

[42]  R. Stornetta,et al.  Photostimulation of Retrotrapezoid Nucleus Phox2b-Expressing Neurons In Vivo Produces Long-Lasting Activation of Breathing in Rats , 2009, The Journal of Neuroscience.

[43]  James Duffin,et al.  Integration of cerebrovascular CO2 reactivity and chemoreflex control of breathing: mechanisms of regulation, measurement, and interpretation. , 2009, American journal of physiology. Regulatory, integrative and comparative physiology.

[44]  J. Dempsey,et al.  Contribution of the carotid body chemoreceptors to eupneic ventilation in the intact, unanesthetized dog. , 2009, Journal of applied physiology.

[45]  E. Nattie,et al.  Antagonism of orexin receptor‐1 in the retrotrapezoid nucleus inhibits the ventilatory response to hypercapnia predominantly in wakefulness , 2009, The Journal of physiology.

[46]  G. Burnstock,et al.  Purinergic signalling in autonomic control , 2009, Trends in Neurosciences.

[47]  E. Nattie,et al.  Central chemoreception is a complex system function that involves multiple brain stem sites. , 2009, Journal of applied physiology.

[48]  J. Dempsey,et al.  Influence of cerebral blood flow on breathing stability. , 2009, Journal of applied physiology.

[49]  L. de Lecea,et al.  The brain hypocretins and their receptors: mediators of allostatic arousal. , 2009, Current opinion in pharmacology.

[50]  R. Stornetta,et al.  Galanin is a selective marker of the retrotrapezoid nucleus in rats , 2009, The Journal of comparative neurology.

[51]  L. Kubin,et al.  Journal of Applied Physiology publishes original papers that deal with diverse area of research in applied , 2008 .

[52]  G. Richerson,et al.  Interaction between defects in ventilatory and thermoregulatory control in mice lacking 5-HT neurons , 2008, Respiratory Physiology & Neurobiology.

[53]  T. Kuwaki Orexinergic modulation of breathing across vigilance states , 2008, Respiratory Physiology & Neurobiology.

[54]  L. Kubin,et al.  Inhibition of pontine noradrenergic A7 cells reduces hypoglossal nerve activity in rats , 2008, Neuroscience.

[55]  Wei Zhang,et al.  Emotional and state-dependent modification of cardiorespiratory function: Role of orexinergic neurons , 2008, Autonomic Neuroscience.

[56]  H. Sontheimer,et al.  Functional implications for Kir4.1 channels in glial biology: from K+ buffering to cell differentiation , 2008, Journal of neurochemistry.

[57]  Sheree M. Johnson,et al.  GFP-expressing locus ceruleus neurons from Prp57 transgenic mice exhibit CO2/H+ responses in primary cell culture. , 2008, Journal of applied physiology.

[58]  P. Guyenet,et al.  The 2008 Carl Ludwig Lecture: retrotrapezoid nucleus, CO2 homeostasis, and breathing automaticity. , 2008, Journal of applied physiology.

[59]  W. Dunin-Barkowski,et al.  Effect of hypercapnia on sleep and breathing in unanesthetized cats. , 2008, Sleep.

[60]  R. Stornetta,et al.  Selective lesion of retrotrapezoid Phox2b‐expressing neurons raises the apnoeic threshold in rats , 2008, The Journal of physiology.

[61]  K. Sakai,et al.  Neuronal activity of orexin and non-orexin waking-active neurons during wake–sleep states in the mouse , 2008, Neuroscience.

[62]  E. Nattie,et al.  Serotonin transporter knockout mice have a reduced ventilatory response to hypercapnia (predominantly in males) but not to hypoxia , 2008, The Journal of physiology.

[63]  E. Nattie,et al.  Focal CO2 dialysis in raphe obscurus does not stimulate ventilation but enhances the response to focal CO2 dialysis in the retrotrapezoid nucleus. , 2008, Journal of applied physiology.

[64]  E. Deneris,et al.  Redefining the serotonergic system by genetic lineage , 2008, Nature Neuroscience.

[65]  Glenn J Tattersall,et al.  Defects in Breathing and Thermoregulation in Mice with Near-Complete Absence of Central Serotonin Neurons , 2008, The Journal of Neuroscience.

[66]  E. Nattie,et al.  Brainstem catecholaminergic neurons modulate both respiratory and cardiovascular function. , 2008, Advances in experimental medicine and biology.

[67]  R. Putnam,et al.  The chemosensitive response of neurons from the locus coeruleus (LC) to hypercapnic acidosis with clamped intracellular pH. , 2008, Advances in experimental medicine and biology.

[68]  D. Bayliss,et al.  The retrotrapezoid nucleus and central chemoreception. , 2008, Advances in experimental medicine and biology.

[69]  Aihua Li,et al.  Multiple central chemoreceptor sites: cell types and function in vivo. , 2008, Advances in experimental medicine and biology.

[70]  L. Gargaglioni,et al.  Locus coeruleus noradrenergic neurons and CO2 drive to breathing , 2008, Pflügers Archiv - European Journal of Physiology.

[71]  南部 忠洋 Distribution of orexin neurons in the adult rat brain , 2007 .

[72]  M. Dutschmann,et al.  Activation of Orexin B receptors in the pontine Kölliker-Fuse nucleus modulates pre-inspiratory hypoglossal motor activity in rat , 2007, Respiratory Physiology & Neurobiology.

[73]  K. Deisseroth,et al.  Neural substrates of awakening probed with optogenetic control of hypocretin neurons , 2007, Nature.

[74]  M. Yanagisawa,et al.  Contribution of orexin in hypercapnic chemoreflex: evidence from genetic and pharmacological disruption and supplementation studies in mice. , 2007, Journal of applied physiology.

[75]  J C Smith,et al.  Spatial and functional architecture of the mammalian brain stem respiratory network: a hierarchy of three oscillatory mechanisms. , 2007, Journal of neurophysiology.

[76]  R. Stornetta,et al.  Central nervous system distribution of the transcription factor Phox2b in the adult rat , 2007, The Journal of comparative neurology.

[77]  H. Forster,et al.  The cerebellar fastigial nucleus contributes to CO2-H+ ventilatory sensitivity in awake goats , 2007, Respiratory Physiology & Neurobiology.

[78]  I. Homma,et al.  Compensatory airway dilation and additive ventilatory augmentation mediated by dorsomedial medullary 5-hydroxytryptamine 2 receptor activity and hypercapnia. , 2007, American journal of physiology. Regulatory, integrative and comparative physiology.

[79]  J. Dempsey,et al.  The apneic threshold during non-REM sleep in dogs: sensitivity of carotid body vs. central chemoreceptors. , 2007, Journal of applied physiology.

[80]  Lars Fugger,et al.  Control of hypothalamic orexin neurons by acid and CO2 , 2007, Proceedings of the National Academy of Sciences.

[81]  Takeshi Sakurai,et al.  The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness , 2007, Nature Reviews Neuroscience.

[82]  J. V. Gerven,et al.  Promotion of sleep by targeting the orexin system in rats, dogs and humans , 2007, Nature Medicine.

[83]  M. Yanagisawa,et al.  Vigilance state-dependent attenuation of hypercapnic chemoreflex and exaggerated sleep apnea in orexin knockout mice. , 2007, Journal of applied physiology.

[84]  Sergey N Markin,et al.  Spatial organization and state-dependent mechanisms for respiratory rhythm and pattern generation. , 2007, Progress in brain research.

[85]  E. Nattie,et al.  Neurokinin-1 receptor-expressing neurons in the ventral medulla are essential for normal central and peripheral chemoreception in the conscious rat. , 2006, Journal of applied physiology.

[86]  E. Nattie,et al.  Simultaneous inhibition of caudal medullary raphe and retrotrapezoid nucleus decreases breathing and the CO2 response in conscious rats , 2006, The Journal of physiology.

[87]  Bruno Chenuel,et al.  Influence of cerebrovascular function on the hypercapnic ventilatory response in healthy humans , 2006, The Journal of physiology.

[88]  P. Guyenet,et al.  Afferent and efferent connections of the rat retrotrapezoid nucleus , 2006, The Journal of comparative neurology.

[89]  E. Nattie,et al.  Ventilatory effects of muscimol microdialysis into the rostral medullary raphé region of conscious rats , 2006, Respiratory Physiology & Neurobiology.

[90]  Bong Jin Kang,et al.  Expression of Phox2b by Brainstem Neurons Involved in Chemosensory Integration in the Adult Rat , 2006, The Journal of Neuroscience.

[91]  H. Kinney,et al.  Ventilatory response to hypercapnia and hypoxia after extensive lesion of medullary serotonergic neurons in newborn conscious piglets. , 2006, Journal of applied physiology.

[92]  H. Forster,et al.  Postnatal developmental changes in CO2 sensitivity in rats. , 2006, Journal of applied physiology.

[93]  D. Bayliss,et al.  Purinergic P2 Receptors Modulate Excitability But Do Not Mediate pH Sensitivity of RTN Respiratory Chemoreceptors , 2006, The Journal of Neuroscience.

[94]  H. Forster,et al.  CO2/H+ chemoreceptors in the cerebellar fastigial nucleus do not uniformly affect breathing of awake goats. , 2006, Journal of applied physiology.

[95]  E. Nattie,et al.  Central chemoreception 2005: A brief review , 2006, Autonomic Neuroscience.

[96]  Y. Fukuda,et al.  Multiple components of the defense response depend on orexin: Evidence from orexin knockout mice and orexin neuron-ablated mice , 2006, Autonomic Neuroscience.

[97]  G. Hilaire Endogenous noradrenaline affects the maturation and function of the respiratory network: Possible implication for SIDS , 2006, Autonomic Neuroscience.

[98]  H. Forster,et al.  Lesions in the cerebellar fastigial nucleus have a small effect on the hyperpnea needed to meet the gas exchange requirements of submaximal exercise. , 2006, Journal of applied physiology.

[99]  T. Sakurai Roles of orexins and orexin receptors in central regulation of feeding behavior and energy homeostasis. , 2006, CNS & neurological disorders drug targets.

[100]  R. Stornetta,et al.  Peripheral chemoreceptor inputs to retrotrapezoid nucleus (RTN) CO2‐sensitive neurons in rats , 2006, The Journal of physiology.

[101]  M. Haxhiu,et al.  CNS determinants of sleep-related worsening of airway functions: Implications for nocturnal asthma , 2006, Respiratory Physiology & Neurobiology.

[102]  E. Nattie,et al.  Catecholamine neurones in rats modulate sleep, breathing, central chemoreception and breathing variability , 2006, The Journal of physiology.

[103]  C A Smith,et al.  Response time and sensitivity of the ventilatory response to CO2 in unanesthetized intact dogs: central vs. peripheral chemoreceptors. , 2006, Journal of applied physiology.

[104]  C. Saper,et al.  Homeostatic, circadian, and emotional regulation of sleep , 2005, The Journal of comparative neurology.

[105]  R. Fregosi,et al.  Respiratory-related discharge of genioglossus muscle motor units. , 2005, American journal of respiratory and critical care medicine.

[106]  D. Bayliss,et al.  Regulation of Ventral Surface Chemoreceptors by the Central Respiratory Pattern Generator , 2005, The Journal of Neuroscience.

[107]  R. Pásaro,et al.  Characterization of efferent projections of chemosensitive neurons in the caudal parapyramidal area of the rat brain , 2005, Brain Research Bulletin.

[108]  J. Gallego,et al.  Sleep-disordered breathing in newborn mice heterozygous for the transcription factor Phox2b. , 2005, American journal of respiratory and critical care medicine.

[109]  Alexander V. Gourine,et al.  ATP is a mediator of chemosensory transduction in the central nervous system , 2005, Nature.

[110]  E. Nattie,et al.  Medullary serotonergic neurones modulate the ventilatory response to hypercapnia, but not hypoxia in conscious rats , 2005, The Journal of physiology.

[111]  G. Richerson,et al.  Homing in on the specific phenotype(s) of central respiratory chemoreceptors. , 2005, Experimental physiology.

[112]  John K. Young,et al.  Orexin stimulates breathing via medullary and spinal pathways. , 2005, Journal of applied physiology.

[113]  M. Yanagisawa,et al.  Persistent pain and stress activate pain-inhibitory orexin pathways , 2005, Neuroreport.

[114]  R. Thomas,et al.  Low-concentration carbon dioxide is an effective adjunct to positive airway pressure in the treatment of refractory mixed central and obstructive sleep-disordered breathing. , 2005, Sleep.

[115]  A. Malhotra,et al.  Ventilatory control and airway anatomy in obstructive sleep apnea. , 2004, American journal of respiratory and critical care medicine.

[116]  D. Bayliss,et al.  Respiratory control by ventral surface chemoreceptor neurons in rats , 2004, Nature Neuroscience.

[117]  H. Forster,et al.  Effects on breathing of focal acidosis at multiple medullary raphe sites in awake goats. , 2004, Journal of applied physiology.

[118]  Michel Simonneau,et al.  Modulation of the respiratory rhythm generator by the pontine noradrenergic A5 and A6 groups in rodents , 2004, Respiratory Physiology & Neurobiology.

[119]  J. Dempsey,et al.  The ventilatory responsiveness to CO2 below eupnoea as a determinant of ventilatory stability in sleep , 2004, The Journal of physiology.

[120]  E. Mignot,et al.  The diurnal rhythm of hypocretin in young and old F344 rats. , 2004, Sleep.

[121]  G. Richerson,et al.  Serotonergic neurons as carbon dioxide sensors that maintain ph homeostasis , 2004, Nature Reviews Neuroscience.

[122]  H. Forster,et al.  Effects on breathing in awake and sleeping goats of focal acidosis in the medullary raphe. , 2004, Journal of applied physiology.

[123]  E. Nattie,et al.  Inhibition of medullary raphe serotonergic neurons has age-dependent effects on the CO2 response in newborn piglets. , 2004, Journal of applied physiology.

[124]  G. Richerson,et al.  Medullary serotonergic neurones and adjacent neurones that express neurokinin‐1 receptors are both involved in chemoreception in vivo , 2004, The Journal of physiology.

[125]  E. Mignot,et al.  Increased hypocretin-1 (orexin-a) levels in cerebrospinal fluid of rats after short-term forced activity , 2004, Regulatory Peptides.

[126]  A. Lovering,et al.  Hypocapnia decreases the amount of rapid eye movement sleep in cats. , 2003, High altitude medicine & biology.

[127]  H. Loeschcke,et al.  Elimination of central chemosensitivity by coagulation of a bilateral area on the ventral medullary surface in awake cats , 1979, Pflügers Archiv.

[128]  Y. Fukuda,et al.  Effect of H+ on the membrane potential of silent cells in the ventral and dorsal surface layers of the rat medulla in vitro , 1978, Pflügers Archiv.

[129]  C. Trouth,et al.  Topography of the respiratory responses to electrical stimulation in the medulla oblongata , 1973, Pflügers Archiv.

[130]  J. Dempsey,et al.  Ventilatory responsiveness to CO2 above & below eupnea: relative importance of peripheral chemoreception. , 2004, Advances in experimental medicine and biology.

[131]  D. Millhorn,et al.  CO2 decreases membrane conductance and depolarizes neurons in the nucleus tractus solitarii , 2004, Experimental Brain Research.

[132]  J. Gallego,et al.  Phox2b controls the development of peripheral chemoreceptors and afferent visceral pathways , 2003, Development.

[133]  B. Maher,et al.  Idiopathic congenital central hypoventilation syndrome: Analysis of genes pertinent to early autonomic nervous system embryologic development and identification of mutations in PHOX2b , 2003, American journal of medical genetics. Part A.

[134]  J. Feldman,et al.  Breathing: rhythmicity, plasticity, chemosensitivity. , 2003, Annual review of neuroscience.

[135]  R. Stornetta,et al.  Hypothalamic orexin (hypocretin) neurons express vesicular glutamate transporters VGLUT1 or VGLUT2 , 2003, The Journal of comparative neurology.

[136]  Dennis McGinty,et al.  Hypothalamic regulation of sleep and arousal. , 2003, Frontiers in bioscience : a journal and virtual library.

[137]  J. Dempsey,et al.  The essential role of carotid body chemoreceptors in sleep apnea. , 2003, Canadian journal of physiology and pharmacology.

[138]  I. Solomon Focal CO2/H+ alters phrenic motor output response to chemical stimulation of cat pre-Botzinger complex in vivo. , 2003, Journal of applied physiology.

[139]  G. E. Meadows,et al.  Hypercapnic cerebral vascular reactivity is decreased, in humans, during sleep compared with wakefulness. , 2003, Journal of applied physiology.

[140]  I. Komuro,et al.  Attenuated defense response and low basal blood pressure in orexin knockout mice. , 2003, American journal of physiology. Regulatory, integrative and comparative physiology.

[141]  R. Pásaro,et al.  Highly H+‐sensitive neurons in the caudal ventrolateral medulla of the rat , 2003, The Journal of physiology.

[142]  B. Yamamoto,et al.  Catecholaminergic microcircuitry controlling the output of airway-related vagal preganglionic neurons. , 2003, Journal of applied physiology.

[143]  C. Berridge,et al.  The locus coeruleus–noradrenergic system: modulation of behavioral state and state-dependent cognitive processes , 2003, Brain Research Reviews.

[144]  S. Veasey,et al.  Pharmacological characterization of serotonergic receptor activity in the hypoglossal nucleus. , 2003, American journal of respiratory and critical care medicine.

[145]  E. Nattie,et al.  CO2 dialysis in one chemoreceptor site, the RTN: stimulus intensity and sensitivity in the awake rat , 2002, Respiratory Physiology & Neurobiology.

[146]  E. Nattie,et al.  Substance P‐saporin lesion of neurons with NK1 receptors in one chemoreceptor site in rats decreases ventilation and chemosensitivity , 2002, The Journal of physiology.

[147]  J. Brunet,et al.  Phox2 genes - from patterning to connectivity. , 2002, Current opinion in genetics & development.

[148]  F. Eldridge,et al.  Anatomical arrangement of hypercapnia-activated cells in the superficial ventral medulla of rats. , 2002, Journal of applied physiology.

[149]  Ming-Fung Wu,et al.  Release of Hypocretin (Orexin) during Waking and Sleep States , 2002, The Journal of Neuroscience.

[150]  E. Nattie,et al.  CO2 dialysis in nucleus tractus solitarius region of rat increases ventilation in sleep and wakefulness. , 2002, Journal of applied physiology.

[151]  V. Pieribone,et al.  Chemosensitive serotonergic neurons are closely associated with large medullary arteries , 2002, Nature Neuroscience.

[152]  E. Nattie,et al.  The retrotrapezoid nucleus (RTN): local cytoarchitecture and afferent connections , 2002, Respiratory Physiology & Neurobiology.

[153]  P. Nolan,et al.  Selected Contribution: Effects of sleep-wake state on the genioglossus vs. diaphragm muscle responses to CO2 in rats , 2002 .

[154]  P. Nolan,et al.  Effects of sleep-wake state on the genioglossus vs.diaphragm muscle response to CO(2) in rats. , 2002, Journal of applied physiology.

[155]  N. Dun,et al.  Orexins/hypocretins excite rat sympathetic preganglionic neurons in vivo and in vitro. , 2001, American journal of physiology. Regulatory, integrative and comparative physiology.

[156]  G. Richerson,et al.  Chemosensitivity of serotonergic neurons in the rostral ventral medulla. , 2001, Respiration physiology.

[157]  R. Putnam,et al.  Cell-cell coupling in CO(2)/H(+)-excited neurons in brainstem slices. , 2001, Respiration physiology.

[158]  D. Frazier,et al.  Microinjection of acetazolamide into the fastigial nucleus augments respiratory output in the rat. , 2001, Journal of applied physiology.

[159]  E. Mignot,et al.  Fluctuation of extracellular hypocretin‐1 (orexin A) levels in the rat in relation to the light–dark cycle and sleep–wake activities , 2001, The European journal of neuroscience.

[160]  R. Putnam,et al.  Development of in vivo ventilatory and single chemosensitive neuron responses to hypercapnia in rats. , 2001, Respiration physiology.

[161]  C. Saper,et al.  Differential expression of orexin receptors 1 and 2 in the rat brain , 2001, The Journal of comparative neurology.

[162]  Jon T. Willie,et al.  Genetic Ablation of Orexin Neurons in Mice Results in Narcolepsy, Hypophagia, and Obesity , 2001, Neuron.

[163]  R. Horner,et al.  Microdialysis perfusion of 5‐HT into hypoglossal motor nucleus differentially modulates genioglossus activity across natural sleep‐wake states in rats , 2001, The Journal of physiology.

[164]  E. Nattie,et al.  CO2 dialysis in the medullary raphe of the rat increases ventilation in sleep. , 2001, Journal of applied physiology.

[165]  J. Erlichman,et al.  Ventilatory effects of impaired glial function in a brain stem chemoreceptor region in the conscious rat. , 2001, Journal of applied physiology.

[166]  E. Nattie,et al.  Bicuculline dialysis in the retrotrapezoid nucleus (RTN) region stimulates breathing in the awake rat. , 2001, Respiration physiology.

[167]  P. Pasquis,et al.  Upper airway resistance during progressive hypercapnia and progressive hypoxia in normal awake subjects. , 2000, Respiration physiology.

[168]  Michael Aldrich,et al.  Reduced Number of Hypocretin Neurons in Human Narcolepsy , 2000, Neuron.

[169]  N. Ayas,et al.  Hypercapnia can induce arousal from sleep in the absence of altered respiratory mechanoreception. , 2000, American journal of respiratory and critical care medicine.

[170]  J. Sunderram,et al.  Serotonergic stimulation of the genioglossus and the response to nasal continuous positive airway pressure. , 2000, American journal of respiratory and critical care medicine.

[171]  E. Nattie,et al.  Muscimol dialysis in the retrotrapezoid nucleus region inhibits breathing in the awake rat. , 2000, Journal of applied physiology.

[172]  G. Aston-Jones,et al.  Locus coeruleus and regulation of behavioral flexibility and attention. , 2000, Progress in brain research.

[173]  R. Wiley,et al.  Targeting neurokinin-1 receptor-expressing neurons with [Sar9,Met(O2)11]substance P-saporin , 1999, Neuroscience Letters.

[174]  E. Nattie,et al.  CO2, brainstem chemoreceptors and breathing , 1999, Progress in Neurobiology.

[175]  J. Dempsey,et al.  Role of respiratory motor output in within-breath modulation of muscle sympathetic nerve activity in humans. , 1999, Circulation research.

[176]  E. Nattie,et al.  CO(2) microdialysis in retrotrapezoid nucleus of the rat increases breathing in wakefulness but not in sleep. , 1999, Journal of applied physiology.

[177]  Jon T. Willie,et al.  Narcolepsy in orexin Knockout Mice Molecular Genetics of Sleep Regulation , 1999, Cell.

[178]  X. Morin,et al.  The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives , 1999, Nature.

[179]  G. Barsh,et al.  Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area , 1998, The Journal of comparative neurology.

[180]  P Scheid,et al.  Respiration‐modulated membrane potential and chemosensitivity of locus coeruleus neurones in the in vitro brainstem‐spinal cord of the neonatal rat , 1998, The Journal of physiology.

[181]  A. N. van den Pol,et al.  Neurons Containing Hypocretin (Orexin) Project to Multiple Neuronal Systems , 1998, The Journal of Neuroscience.

[182]  J. Erlichman,et al.  Ventilatory effects of glial dysfunction in a rat brain stem chemoreceptor region. , 1998, Journal of applied physiology.

[183]  H. Forster Ventilatory effects of glial dysfunction in a rat brain stem chemoreceptor region". , 1998, Journal of applied physiology.

[184]  J. Severinghaus,et al.  Hans Loeschcke, Robert Mitchell and the medullary CO2 chemoreceptors: a brief historical review. , 1998, Respiration physiology.

[185]  B. Erokwu,et al.  The role of the medullary raphe nuclei in regulation of cholinergic outflow to the airways. , 1998, Journal of the autonomic nervous system.

[186]  M. Marjanovic,et al.  The Temperature Dependence of Intracellular pH in Isolated Frog Skeletal Muscle: Lessons Concerning the Na+-H+ Exchanger , 1998, The Journal of Membrane Biology.

[187]  J. Leiter,et al.  Diethyl pyrocarbonate (DEPC) inhibits CO2 chemosensitivity in Helix aspersa. , 1998, Respiration physiology.

[188]  M. Younes,et al.  Control of breathing during sleep assessed by proportional assist ventilation. , 1998, Journal of applied physiology.

[189]  A. Dahan,et al.  Expression of c‐fos in the rat brainstem after exposure to hypoxia and to normoxic and hyperoxic hypercapnia , 1997, The Journal of comparative neurology.

[190]  H. Forster,et al.  Effect on breathing of surface ventrolateral medullary cooling in awake, anesthetized and asleep goats. , 1997, Respiration physiology.

[191]  J. Praud,et al.  Abolition of breathing rhythmicity in lambs by CO2 unloading in the first hours of life. , 1997, Respiration physiology.

[192]  E. Nattie,et al.  Effects of unilateral lesions of retrotrapezoid nucleus on breathing in awake rats. , 1997, Journal of applied physiology.

[193]  E. Nattie,et al.  Central chemoreception in the region of the ventral respiratory group in the rat. , 1996, Journal of applied physiology.

[194]  N. Cherniack,et al.  CO2-induced c-fos expression in the CNS catecholaminergic neurons. , 1996, Respiration physiology.

[195]  H. Forster,et al.  Effects of cooling the ventrolateral medulla on diaphragm activity during NREM sleep. , 1996, Respiration physiology.

[196]  D. Ballantyne,et al.  Chemosensitive medullary neurones in the brainstem‐‐spinal cord preparation of the neonatal rat. , 1996, The Journal of physiology.

[197]  E. Nattie,et al.  Evidence for central chemoreception in the midline raphé. , 1996, Journal of applied physiology.

[198]  C. Trouth Ventral Brainstem Mechanisms and Control of Respiration and Blood Pressure , 1995 .

[199]  J. Dempsey,et al.  Pharyngeal narrowing/occlusion during central sleep apnea. , 1995, Journal of applied physiology.

[200]  G. Richerson Response to CO2 of neurons in the rostral ventral medulla in vitro. , 1995, Journal of neurophysiology.

[201]  G. Somero,et al.  Proteins and temperature. , 1995, Annual review of physiology.

[202]  J. Dempsey,et al.  Interactive ventilatory effects of carotid body hypoxia and hypocapnia in the unanesthetized dog. , 1995, Advances in experimental medicine and biology.

[203]  J. Feldman,et al.  Brainstem network controlling descending drive to phrenic motoneurons in rat , 1994, The Journal of comparative neurology.

[204]  E. Nattie,et al.  Retrotrapezoid nucleus lesions decrease phrenic activity and CO2 sensitivity in rats. , 1994, Respiration physiology.

[205]  P. Okunieff,et al.  1H-NMR measurement of fractional dissociation of imidazole in intact animals. , 1994, The American journal of physiology.

[206]  E. Phillipson,et al.  Effects of sleep on the tonic drive to respiratory muscle and the threshold for rhythm generation in the dog. , 1994, The Journal of physiology.

[207]  E. Phillipson,et al.  Tonic respiratory drive in the absence of rhythm generation in the conscious dog. , 1992, Journal of applied physiology.

[208]  M. Fung,et al.  Responses of respiratory modulated and tonic units in the retrotrapezoid nucleus to CO2. , 1993, Respiration physiology.

[209]  A. Loewy,et al.  CNS innervation of airway-related parasympathetic preganglionic neurons: a transneuronal labeling study using pseudorabies virus , 1993, Brain Research.

[210]  E. Nattie,et al.  Widespread sites of brain stem ventilatory chemoreceptors. , 1993, Journal of applied physiology.

[211]  E. Nattie,et al.  Retrofacial lesions: effects on CO2-sensitive phrenic and sympathetic nerve activity. , 1992, Journal of applied physiology.

[212]  A. Pack,et al.  Serotonergic excitatory drive to hypoglossal motoneurons in the decerebrate cat , 1992, Neuroscience Letters.

[213]  B. Ransom,et al.  The neurophysiology of glial cells. , 1992, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[214]  E. Nattie,et al.  Lesions in retrotrapezoid nucleus decrease ventilatory output in anesthetized or decerebrate cats. , 1991, Journal of applied physiology.

[215]  E. Nattie,et al.  Acetazolamide on the ventral medulla of the cat increases phrenic output and delays the ventilatory response to CO2. , 1991, The Journal of physiology.

[216]  N. Smatresk Chemoreceptor modulation of endogenous respiratory rhythms in vertebrates. , 1990, The American journal of physiology.

[217]  E. Nattie The alphastat hypothesis in respiratory control and acid-base balance. , 1990, Journal of applied physiology.

[218]  N. Kogo,et al.  In vivo study on medullary H(+)-sensitive neurons. , 1990, Journal of applied physiology.

[219]  E. Nattie,et al.  Fluorescence location of RVLM kainate microinjections that alter the control of breathing. , 1990, Journal of applied physiology.

[220]  J. Orem The nature of the wakefulness stimulus for breathing. , 1990, Progress in clinical and biological research.

[221]  H. Arita,et al.  ECF pH dynamics within the ventrolateral medulla: a microelectrode study. , 1989, Journal of applied physiology.

[222]  N. Kogo,et al.  Possible locations of pH-dependent central chemoreceptors: intramedullary regions with acidic shift of extracellular fluid pH during hypercapnia , 1989, Brain Research.

[223]  J C Smith,et al.  Brainstem projections to the major respiratory neuron populations in the medulla of the cat , 1989, The Journal of comparative neurology.

[224]  N. Gavriely,et al.  Effect of hypercapnia on upper airway resistance and collapsibility in anesthetized dogs. , 1989, Respiration physiology.

[225]  D. Hudgel,et al.  Alteration in obstructive apnea pattern induced by changes in oxygen- and carbon-dioxide-inspired concentrations. , 1988, The American review of respiratory disease.

[226]  J A Neubauer,et al.  Correlation between genioglossal and diaphragmatic responses to hypercapnia during sleep. , 1987, The American review of respiratory disease.

[227]  B. Jacobs Single unit activity of locus coeruleus neurons in behaving animals , 1986, Progress in Neurobiology.

[228]  E. Nattie Diethyl pyrocarbonate (an imidazole binding substance) inhibits rostral VLM CO2 sensitivity. , 1986, Journal of applied physiology.

[229]  J. Kiley,et al.  Respiratory responses to medullary hydrogen ion changes in cats: different effects of respiratory and metabolic acidoses. , 1985, The Journal of physiology.

[230]  J. V. van Beek,et al.  Central respiratory CO2 sensitivity at extreme hypocapnia. , 1984, Respiration physiology.

[231]  J. Dempsey,et al.  Mechanisms of hypoxia‐induced periodic breathing during sleep in humans. , 1983, The Journal of physiology.

[232]  J A Dempsey,et al.  Interaction of sleep state and chemical stimuli in sustaining rhythmic ventilation. , 1983, Journal of applied physiology: respiratory, environmental and exercise physiology.

[233]  H. Loeschcke Central chemosensitivity and the reaction theory. , 1982, The Journal of physiology.

[234]  T. Sears,et al.  Reciprocal tonic activation of inspiratory and expiratory motoneurones by chemical drives , 1982, Nature.

[235]  K. Cooney,et al.  Ventilatory effects of kainic acid injection of the ventrolateral solitary nucleus. , 1982, Journal of applied physiology: respiratory, environmental and exercise physiology.

[236]  J A Dempsey,et al.  Mediation of Ventilatory Adaptations. , 1982, Physiological reviews.

[237]  Z. Chen [Central chemoreceptors and respiratory control]. , 1982, Sheng li ke xue jin zhan [Progress in physiology].

[238]  M. Elam,et al.  Hypercapnia and hypoxia: Chemoreceptor-mediated control of locus coeruleus neurons and splanchnic, sympathetic nerves , 1981, Brain Research.

[239]  L. Kubin,et al.  Is the central inspiratory activity responsible for pCO2-dependent drive of the sympathetic discharge? , 1981, Journal of the autonomic nervous system.

[240]  J. Cooper,et al.  Critical dependence of respiratory rhythmicity on metabolic CO2 load. , 1981, Journal of applied physiology: respiratory, environmental and exercise physiology.

[241]  F. Bloom,et al.  Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[242]  T. V. Santiago,et al.  Effects of graded reduction of brain blood flow on chemical control of breathing. , 1979, Journal of applied physiology: respiratory, environmental and exercise physiology.

[243]  P. Kirkwood,et al.  The effect of carbon dioxide on the tonic and the rhythmic discharges of expiratory bulbospinal neurones. , 1979, The Journal of physiology.

[244]  D. Felten,et al.  Neuronal-vascular relationships in the raphe nuclei, locus coeruleus, and substantia nigra in primates. , 1979, The American journal of anatomy.

[245]  E. Murphy,et al.  Waking and ventilatory responses to laryngeal stimulation in sleeping dogs. , 1978, Journal of applied physiology: respiratory, environmental and exercise physiology.

[246]  J. Hildebrandt,et al.  Ventilatory responses to acute CO2 exposure in the rat. , 1978, Journal of applied physiology: respiratory, environmental and exercise physiology.

[247]  L. Gattinoni,et al.  An alternative to breathing. , 1978, The Journal of thoracic and cardiovascular surgery.

[248]  R. Reeves The interaction of body temperature and acid-base balance in ectothermic vertebrates. , 1977, Annual review of physiology.

[249]  A. Malan,et al.  Intracellular pH in cold-blooded vertebrates as a function of body temperature. , 1976, Respiration physiology.

[250]  M. I. Cohen,et al.  Respiratory rhythmicity in the cat. , 1976, Federation proceedings.

[251]  I. Cameron,et al.  Ventilatory response to CO2 inhalation and intravenous infusion of hypercapnic blood. , 1976, Respiration physiology.

[252]  H. Rahn Why are pH of 7.4 and PCO2 of 40 normal values for man? , 1976, Bulletin europeen de physiopathologie respiratoire.

[253]  J. Feldman,et al.  Interaction of pulmonary afferents and pneumotaxic center in control of respiratory pattern in cats. , 1976, Journal of neurophysiology.

[254]  S. Lewis Awake baboon's ventilatory response to venous and inhaled CO2 loading. , 1975, Journal of applied physiology.

[255]  H. Rahn,et al.  Hydrogen ion regulation, temperature, and evolution. , 1975, The American review of respiratory disease.

[256]  R. Casaburi,et al.  Regulation of arterial PCO2 during intravenous CO2 loading. , 1975, Journal of applied physiology.

[257]  E. C. Crawford,et al.  Changes in respiratory functions during metamorphosis of the bullfrog, Rana catesbeiana. , 1973, Respiration physiology.

[258]  R. A. King,et al.  Apneustic breathing after vagotomy in cats with chronic pneumotaxic center lesions. , 1971, Respiration physiology.

[259]  W. O. Friesen,et al.  Hypoxic ventilatory drive in normal man. , 1970, The Journal of clinical investigation.

[260]  H. Bartels,et al.  Blood gas transport properties in gill and lung forms of the axolotl (Ambystoma mexicanum). , 1970, Respiration physiology.

[261]  H. Rahn,et al.  Acid-base balance in cold-blooded vertebrates as a function of body temperature. , 1970, The American journal of physiology.

[262]  H. Batsel Activity of bulbar respiratory neurons during passive hyperventilation. , 1967, Experimental neurology.

[263]  S. W. Kuffler,et al.  The Ferrier Lecture - Neuroglial cells: physiological properties and a potassium mediated effect of neuronal activity on the glial membrane potential , 1967, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[264]  H. Rahn Evolution of the gas transport system in vertebrates. , 1966, Proceedings of the Royal Society of Medicine.

[265]  J. Pappenheimer,et al.  Studies on the respiratory response to disturbances of acid-base balance, with deductions concerning the ionic composition of cerebral interstitial fluid. , 1966, The American journal of physiology.

[266]  T. Lamb Ventilatory responses to intravenous and inspired carbon dioxide in anesthetized cats. , 1966, Respiration physiology.

[267]  J. Pappenheimer,et al.  ROLE OF CEREBRAL FLUIDS IN CONTROL OF RESPIRATION AS STUDIED IN UNANESTHETIZED GOATS. , 1965, The American journal of physiology.

[268]  J. F. Perkins,et al.  INTERACTION OF INTRACRANIAL CHEMOSENSITIVITY WITH PERIPHERAL AFFERENTS TO THE RESPIRATORY CENTERS , 1963, Annals of the New York Academy of Sciences.

[269]  J. Severinghaus,et al.  Respiratory responses mediated through superficial chemosensitive areas on the medulla , 1963, Journal of applied physiology.

[270]  B. R. Fink,et al.  The stimulant effect of wakefulness on respiration: clinical aspects. , 1961, British journal of anaesthesia.

[271]  M. Edwards,et al.  Homeostasis of carbon dioxide during intravenous infusion of carbon dioxide. , 1960, Journal of applied physiology.

[272]  I. Leusen Chemosensitivity of the respiratory center; influence of CO2 in the cerebral ventricles on respiration. , 1954, The American journal of physiology.