The Polarized Image of a Synchrotron-emitting Ring of Gas Orbiting a Black Hole

Synchrotron radiation from hot gas near a black hole results in a polarized image. The image polarization is determined by effects including the orientation of the magnetic field in the emitting region, relativistic motion of the gas, strong gravitational lensing by the black hole, and parallel transport in the curved spacetime. We explore these effects using a simple model of an axisymmetric, equatorial accretion disk around a Schwarzschild black hole. By using an approximate expression for the null geodesics derived by Beloborodov (2002) and conservation of the Walker-Penrose constant, we provide analytic estimates for the image polarization. We test this model using currently favored general relativistic magnetohydrodynamic simulations of M87*, using ring parameters given by the simulations. For a subset of these with modest Faraday effects, we show that the ring model broadly reproduces the polarimetric image morphology. Our model also predicts the polarization evolution for compact flaring regions, such as those observed from Sgr A* with GRAVITY. With suitably chosen parameters, our simple model can reproduce the EVPA pattern and relative polarized intensity in Event Horizon Telescope images of M87*. Under the physically motivated assumption that the magnetic field trails the fluid velocity, this comparison is consistent with the clockwise rotation inferred from total intensity images.

Daniel C. M. Palumbo | Chih-Wei L. Huang | Alexander W. Raymond | H. Falcke | T. Lauer | K. Bouman | G. Desvignes | B. Benson | J. Carlstrom | D. James | P. Koch | L. Rezzolla | C. Kramer | K. Menten | R. Neri | P. Ho | L. Blackburn | J. Cordes | E. Ros | J. Algaba | Sang-Sung Lee | M. Kino | S. Trippe | Jongho Park | Guangyao Zhao | D. Byun | M. Gurwell | Jae-Young Kim | P. Galison | M. Hecht | C. Gammie | N. Patel | M. Inoue | Aviad Levis | F. Schloerb | E. Fomalont | Jongsoo Kim | R. Narayan | A. Chael | Michael D. Johnson | S. Doeleman | J. Wardle | S. Chatterjee | L. Loinard | F. Roelofs | D. Psaltis | J. Weintroub | A. Rogers | R. Plambeck | R. Tilanus | P. Friberg | J. Moran | K. Young | M. Titus | D. Marrone | G. Bower | T. Krichbaum | A. Roy | V. Fish | K. Akiyama | A. Lobanov | A. Broderick | R. Blundell | M. Honma | T. Oyama | J. SooHoo | F. Tazaki | J. Dexter | A. Chael | K. Asada | C. Brinkerink | G. Crew | R. Gold | J. Zensus | D. Haggard | R. Karuppusamy | Kuo Liu | P. Torne | I. Martí-Vidal | N. Nagar | D. Hughes | Ming-Tang Chen | R. Hesper | K. Toma | M. Sasada | D. Pesce | P. Tiede | Dong-Jin Kim | A. Marscher | S. Jorstad | U. Pen | P. Chesler | T. Crawford | D. Bintley | D. Ward-Thompson | B. Jannuzi | A. Young | K. Chatterjee | I. Natarajan | A. Alberdi | W. Alef | R. Azulay | A. Baczko | D. Ball | M. Baloković | J. Barrett | W. Boland | M. Bremer | R. Brissenden | S. Britzen | T. Bronzwaer | Chi-kwan Chan | I. Cho | P. Christian | Yuzhu Cui | J. Davelaar | R. Deane | J. Dempsey | R. Eatough | R. Fraga-Encinas | C. Fromm | O. Gentaz | B. Georgiev | C. Goddi | K. Hada | S. Issaoun | M. Janssen | B. Jeter | T. Jung | M. Karami | T. Kawashima | G. Keating | M. Kettenis | Junhan Kim | J. Koay | S. Koyama | M. Lindqvist | E. Liuzzo | C. Lonsdale | N. MacDonald | S. Markoff | S. Matsushita | L. Matthews | L. Medeiros | Y. Mizuno | I. Mizuno | M. Mościbrodzka | C. Müller | H. Nagai | G. Narayanan | C. Ni | A. Noutsos | H. Okino | H. Olivares | D. Palumbo | V. Piétu | A. PopStefanija | O. Porth | B. Prather | J. A. Preciado-López | V. Ramakrishnan | M. Rawlings | B. Ripperda | M. Rose | A. Roshanineshat | H. Rottmann | C. Ruszczyk | K. Rygl | S. Sánchez | D. Sánchez-Arguelles | T. Savolainen | K. Schuster | D. Small | B. Sohn | T. Trent | J. Wagner | N. Wex | R. Wharton | M. Wielgus | G. Wong | Z. Younsi | Shan-Shan Zhao | J. Farah | A. Gómez-Ruiz | J. Neilsen | M. Nowak | H. Ford | A. Cruz-Osorio | H. V. van Langevelde | J. Conway | M. De Laurentis | F. Özel | R. Rao | D. V. van Rossum | A. Jiménez-Rosales | D. Yoon | N. Marchili | H. Boyce | R. Lico | A. Nathanail | A. Tetarenko | Angelo Ricarte | G. Musoke | Richard Anantua | A. Fuentes | E. Traianou | Greg Lindahl | D. Broguiere | Wu 悟 Jiang 江 | Yutaro Kofuji | J. Liu 刘 | F. M. Pötzl | J. Gómez | Dominic O. Chang | M. Nakamura | G. Ortiz-Léon | Lijing Shao | H. Sun 孙 | F. Yuan 袁 | E. Himwich | Z. Gelles | Zhiqiang 强 Shen 沈志 | Yongjun 军 Chen 陈永 | R. García | Minfeng 峰 Gu 顾敏 | Luis C. 山 Ho 何子 | M. Kramer | Yan-Rong 荣 Li 李彦 | Zhiyuan 远 Li 李志 | Ru-Sen 森 Lu 路如 | Jirong 荣 Mao 毛基 | A. Raymond | Qingwen 文 Wu 吴庆 | Ye-Fei 飞 Yuan 袁业 | L. Huang 黄 | A. Mejías | David Ball | Shiro Ikeda | Aleksandar PopStefanija | Olivier Gentaz | Britton Jeter | C. Kuo | Wen-Ping Lo | Kotaro Moriyama | Jorge A. Preciado-López | Hung-Yi Pu | Ramprasad Rao | Arash Roshanineshat | I. van Bemmel | Daniel R. van Rossum | Doosoo Yoon | D. Hughes | Des Small | F. Pötzl | A. Levis | R. Anantua | Y. Kofuji | G. Lindahl | J. Davelaar

[1]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. VII. Polarization of the Ring , 2021, The Astrophysical Journal Letters.

[2]  A. Hirshfeld The Event Horizon of Black Holes , 2020 .

[3]  C. Gammie,et al.  Decomposing the internal faraday rotation of black hole accretion flows , 2020, 2009.02369.

[4]  P. T. de Zeeuw,et al.  Dynamically important magnetic fields near the event horizon of Sgr A* , 2020, Astronomy & Astrophysics.

[5]  Daniel C. M. Palumbo,et al.  Discriminating Accretion States via Rotational Symmetry in Simulated Polarimetric Images of M87 , 2020, The Astrophysical Journal.

[6]  Kevin A. Dudevoir,et al.  First M87 Event Horizon Telescope Results. II. Array and Instrumentation , 2019, 1906.11239.

[7]  S. T. Timmer,et al.  First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole , 2019, 1906.11238.

[8]  G. Bisnovatyi-Kogan Accretion into Black Hole, and Formation of Magnetically Arrested Accretion Disks , 2019, Universe.

[9]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole , 2019, The Astrophysical Journal.

[10]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. III. Data Processing and Calibration , 2019, The Astrophysical Journal.

[11]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring , 2019, The Astrophysical Journal.

[12]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole , 2019, The Astrophysical Journal.

[13]  H. Falcke,et al.  ALMA Polarimetry of Sgr A*: Probing the Accretion Flow from the Event Horizon to the Bondi Radius , 2018, The Astrophysical Journal.

[14]  S. Rabien,et al.  Detection of orbital motions near the last stable circular orbit of the massive black hole SgrA* , 2018, Astronomy & Astrophysics.

[15]  S. Rabien,et al.  Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole , 2018, Astronomy & Astrophysics.

[16]  J. Dexter,et al.  The impact of Faraday effects on polarized black hole images of Sagittarius A , 2018, 1805.02652.

[17]  William Junor,et al.  The Structure and Dynamics of the Subparsec Jet in M87 Based on 50 VLBA Observations over 17 Years at 43 GHz , 2018, 1802.06166.

[18]  F. Kislat,et al.  Predicting the X-ray polarization of type 2 Seyfert galaxies , 2017, 1709.03304.

[19]  H. Falcke,et al.  Faraday rotation in GRMHD simulations of the jet launching zone of M87 , 2017, 1703.02390.

[20]  H. F. Astrophysics,et al.  Probing the Magnetic Field Structure in on Black Hole Horizon Scales with Polarized Radiative Transfer Simulations , 2016, 1601.05550.

[21]  P. Ho,et al.  Resolved magnetic-field structure and variability near the event horizon of Sagittarius A* , 2015, Science.

[22]  H. Falcke,et al.  General relativistic magnetohydrodynamical simulations of the jet in M 87 , 2015, 1510.07243.

[23]  Harvard,et al.  Efficient Generation of Jets from Magnetically Arrested Accretion on a Rapidly Spinning Black Hole , 2011, 1108.0412.

[24]  K. Mužić,et al.  Near infrared flares of Sagittarius A* - Importance of near infrared polarimetry , 2009, 0911.4659.

[25]  Usa,et al.  A polarized infrared flare from Sagittarius A* and the signatures of orbiting plasma hotspots , 2006, astro-ph/0611737.

[26]  S. Trippe,et al.  Polarimetry of near-infrared flares from Sagittarius A* , 2006, astro-ph/0610103.

[27]  Astrophysics,et al.  The Submillimeter Polarization of Sgr A , 2006, astro-ph/0607432.

[28]  Harvard University,et al.  Imaging optically-thin hotspots near the black hole horizon of Sgr A* at radio and near-infrared wavelengths , 2005, astro-ph/0509237.

[29]  Avery E. Broderick,et al.  Imaging bright-spots in the accretion flow near the black hole horizon of Sgr A* , 2005, astro-ph/0506433.

[30]  R. Narayan,et al.  Multitemperature Blackbody Spectrum of a Thin Accretion Disk around a Kerr Black Hole: Model Computations and Comparison with Observations , 2004, astro-ph/0411583.

[31]  R. Narayan,et al.  Three-dimensional MHD Simulations of Radiatively Inefficient Accretion Flows , 2003, astro-ph/0301402.

[32]  A. Beloborodov Gravitational Bending of Light Near Compact Objects , 2002, astro-ph/0201117.

[33]  F. Melia,et al.  Polarimetric Imaging of the Massive Black Hole at the Galactic Center , 2001, astro-ph/0106180.

[34]  R. Narayan,et al.  Harmony in Electrons: Cyclotron and Synchrotron Emission by Thermal Electrons in a Magnetic Field , 1996, astro-ph/9601073.

[35]  Roger D. Blandford,et al.  Relativistic jets as compact radio sources , 1979 .

[36]  Tsvi Piran,et al.  Polarization features of x-ray radiation emitted near black holes , 1980 .

[37]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon , 2021, The Astrophysical Journal Letters.