Emerging Concepts of Data Integration in Pathogen Phylodynamics

Phylodynamics has become an increasingly popular statistical framework to extract evolutionary and epidemiological information from pathogen genomes. By harnessing such information, epidemiologists aim to shed light on the spatio-temporal patterns of spread and to test hypotheses about the underlying interaction of evolutionary and ecological dynamics in pathogen populations. Although the field has witnessed a rich development of statistical inference tools with increasing levels of sophistication, these tools initially focused on sequences as their sole primary data source. Integrating various sources of information, however, promises to deliver more precise insights in infectious diseases and to increase opportunities for statistical hypothesis testing. Here, we review how the emerging concept of data integration is stimulating new advances in Bayesian evolutionary inference methodology which formalize a marriage of statistical thinking and evolutionary biology. These approaches include connecting sequence to trait evolution, such as for host, phenotypic and geographic sampling information, but also the incorporation of covariates of evolutionary and epidemic processes in the reconstruction procedures. We highlight how a full Bayesian approach to covariate modeling and testing can generate further insights into sequence evolution, trait evolution, and population dynamics in pathogen populations. Specific examples demonstrate how such approaches can be used to test the impact of host on rabies and HIV evolutionary rates, to identify the drivers of influenza dispersal as well as the determinants of rabies cross-species transmissions, and to quantify the evolutionary dynamics of influenza antigenicity. Finally, we briefly discuss how data integration is now also permeating through the inference of transmission dynamics, leading to novel insights into tree-generative processes and detailed reconstructions of transmission trees. [Bayesian inference; birth–death models; coalescent models; continuous trait evolution; covariates; data integration; discrete trait evolution; pathogen phylodynamics.

[1]  M. Suchard,et al.  SpreaD3: Interactive Visualization of Spatiotemporal History and Trait Evolutionary Processes. , 2016, Molecular biology and evolution.

[2]  Vladimir N. Minin,et al.  Quantifying and Mitigating the Effect of Preferential Sampling on Phylodynamic Inference , 2015, PLoS Comput. Biol..

[3]  Daniel J. Wilson,et al.  Rapid host switching in generalist Campylobacter strains erodes the signal for tracing human infections , 2015, The ISME Journal.

[4]  Guy Baele,et al.  Bayesian Inference Reveals Host-Specific Contributions to the Epidemic Expansion of Influenza A H5N1. , 2015, Molecular biology and evolution.

[5]  P. Lowry,et al.  Island life - classification, speciation and cryptic species of Pycnandra (Sapotaceae) in New Caledonia , 2015 .

[6]  Nicola De Maio,et al.  New Routes to Phylogeography: A Bayesian Structured Coalescent Approximation , 2015, PLoS genetics.

[7]  M. Crisp,et al.  Key innovation or adaptive change? A test of leaf traits using Triodiinae in Australia , 2015, Scientific Reports.

[8]  Trevor Bedford,et al.  Ebola Virus Epidemiology, Transmission, and Evolution during Seven Months in Sierra Leone , 2015, Cell.

[9]  A. Vicentini,et al.  Species tree phylogeny and biogeography of the Neotropical genus Pradosia (Sapotaceae, Chrysophylloideae). , 2015, Molecular phylogenetics and evolution.

[10]  Trevor Bedford,et al.  Global circulation patterns of seasonal influenza viruses vary with antigenic drift , 2015, Nature.

[11]  R. Bouckaert Phylogeography by Diffusion on a Sphere , 2015, bioRxiv.

[12]  Trevor Bedford,et al.  Eight challenges in phylodynamic inference , 2015, Epidemics.

[13]  J. Hadfield,et al.  The Causes and Consequences of Changes in Virulence following Pathogen Host Shifts , 2015, PLoS pathogens.

[14]  Cécile Viboud,et al.  Global migration of influenza A viruses in swine , 2015, Nature Communications.

[15]  Trevor Bedford,et al.  Simultaneously estimating evolutionary history and repeated traits phylogenetic signal: applications to viral and host phenotypic evolution , 2015, Methods in ecology and evolution.

[16]  M. Suchard,et al.  Empirical calibrated radiocarbon sampler: a tool for incorporating radiocarbon‐date and calibration error into Bayesian phylogenetic analyses of ancient DNA , 2015, Molecular ecology resources.

[17]  Trevor Bedford,et al.  ASSESSING PHENOTYPIC CORRELATION THROUGH THE MULTIVARIATE PHYLOGENETIC LATENT LIABILITY MODEL. , 2014, The annals of applied statistics.

[18]  H. Leirs,et al.  Pan-African phylogeny of Mus (subgenus Nannomys) reveals one of the most successful mammal radiations in Africa , 2014, BMC Evolutionary Biology.

[19]  J. Wen,et al.  Phylogenetics and evolution of phyllotaxy in the Solomon's seal genus Polygonatum (Asparagaceae: Polygonateae) , 2014 .

[20]  Nazle M. Veras,et al.  Spatiotemporal dynamics of simian immunodeficiency virus brain infection in CD8+ lymphocyte-depleted rhesus macaques with neuroAIDS. , 2014, The Journal of general virology.

[21]  Stephan Günther,et al.  Emergence of Zaire Ebola virus disease in Guinea. , 2014, The New England journal of medicine.

[22]  M. Ward,et al.  Time-Scaled Evolutionary Analysis of the Transmission and Antibiotic Resistance Dynamics of Staphylococcus aureus Clonal Complex 398 , 2014, Applied and Environmental Microbiology.

[23]  E. Volz,et al.  Sampling through time and phylodynamic inference with coalescent and birth–death models , 2014, Journal of The Royal Society Interface.

[24]  Michael S. Y. Lee,et al.  Sustained miniaturization and anatomical innovation in the dinosaurian ancestors of birds , 2014, Science.

[25]  C. G. Schrago Estimation of the ancestral effective population sizes of African great apes under different selection regimes , 2014, Genetica.

[26]  Samuel Soubeyrand,et al.  A Bayesian approach for inferring the dynamics of partially observed endemic infectious diseases from space-time-genetic data , 2014, Proceedings of the Royal Society B: Biological Sciences.

[27]  A. Rambaut,et al.  Phylogenetic Analysis of Guinea 2014 EBOV Ebolavirus Outbreak , 2014, PLoS currents.

[28]  J. Hadfield,et al.  The Contribution of Viral Genotype to Plasma Viral Set-Point in HIV Infection , 2014, PLoS pathogens.

[29]  David Welch,et al.  Efficient Bayesian inference under the structured coalescent , 2014, Bioinform..

[30]  Michael Worobey,et al.  A synchronized global sweep of the internal genes of modern avian influenza virus , 2014, Nature.

[31]  Guy Baele,et al.  The Genealogical Population Dynamics of HIV-1 in a Large Transmission Chain: Bridging within and among Host Evolutionary Rates , 2014, PLoS Comput. Biol..

[32]  F. Luciani,et al.  Evidence that hepatitis C virus genome partly controls infection outcome , 2014, Evolutionary applications.

[33]  Sebastian Bonhoeffer,et al.  Virulence and Pathogenesis of HIV-1 Infection: An Evolutionary Perspective , 2014, Science.

[34]  Paul Kellam,et al.  Spread, Circulation, and Evolution of the Middle East Respiratory Syndrome Coronavirus , 2014, mBio.

[35]  M. Suchard,et al.  Unifying Viral Genetics and Human Transportation Data to Predict the Global Transmission Dynamics of Human Influenza H3N2 , 2014, PLoS pathogens.

[36]  Thibaut Jombart,et al.  outbreaker2: Bayesian Reconstruction of Disease Outbreaks by Combining Epidemiologic and Genomic Data , 2018 .

[37]  Katia Koelle,et al.  Reconciling Phylodynamics with Epidemiology: The Case of Dengue Virus in Southern Vietnam , 2013, Molecular biology and evolution.

[38]  Trevor Bedford,et al.  Integrating influenza antigenic dynamics with molecular evolution , 2013, eLife.

[39]  C. G. Schrago The effective population sizes of the anthropoid ancestors of the human-chimpanzee lineage provide insights on the historical biogeography of the great apes. , 2014, Molecular biology and evolution.

[40]  A. Leigh Brown,et al.  Reassortment patterns of avian influenza virus internal segments among different subtypes , 2014, BMC Evolutionary Biology.

[41]  D. Helbing,et al.  The Hidden Geometry of Complex, Network-Driven Contagion Phenomena , 2013, Science.

[42]  Michael Dunn,et al.  Time and Place in the Prehistory of the Aslian Languages , 2013, Human biology.

[43]  D. Burke,et al.  Substitutions Near the Receptor Binding Site Determine Major Antigenic Change During Influenza Virus Evolution , 2013, Science.

[44]  S. Ho,et al.  Adaptive radiation of chemosymbiotic deep-sea mussels , 2013, Proceedings of the Royal Society B: Biological Sciences.

[45]  A. Rambaut,et al.  Real-time characterization of the molecular epidemiology of an influenza pandemic , 2013, Biology Letters.

[46]  M. A. Suchard,et al.  Distinguishable Epidemics of Multidrug-Resistant Salmonella Typhimurium DT104 in Different Hosts , 2013, Science.

[47]  K. Holt,et al.  Out-of-Africa migration and Neolithic co-expansion of Mycobacterium tuberculosis with modern humans , 2013, Nature Genetics.

[48]  Guy Baele,et al.  Bayesian evolutionary model testing in the phylogenomics era: matching model complexity with computational efficiency , 2013, Bioinform..

[49]  Toshikazu Hasegawa,et al.  Evolution of the Ainu Language in Space and Time , 2013, PloS one.

[50]  Marc A Suchard,et al.  Simultaneously reconstructing viral cross-species transmission history and identifying the underlying constraints , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[51]  Marc A Suchard,et al.  Graph hierarchies for phylogeography , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[52]  Trevor Bedford,et al.  Viral Phylodynamics , 2013, PLoS Comput. Biol..

[53]  Mandev S. Gill,et al.  Improving Bayesian population dynamics inference: a coalescent-based model for multiple loci. , 2013, Molecular biology and evolution.

[54]  N. Barton,et al.  Modelling evolution in a spatial continuum , 2013 .

[55]  Trevor Bedford,et al.  The Roles of Competition and Mutation in Shaping Antigenic and Genetic Diversity in Influenza , 2013, PLoS pathogens.

[56]  A. G. Pedersen,et al.  Computational Molecular Evolution , 2013 .

[57]  Samuel Alizon,et al.  Within-host and between-host evolutionary rates across the HIV-1 genome , 2013, Retrovirology.

[58]  S. Bonhoeffer,et al.  Birth–death skyline plot reveals temporal changes of epidemic spread in HIV and hepatitis C virus (HCV) , 2012, Proceedings of the National Academy of Sciences.

[59]  Andrew Rambaut,et al.  Estimating the Rate of Intersubtype Recombination in Early HIV-1 Group M Strains , 2012, Journal of Virology.

[60]  Samuel Soubeyrand,et al.  A Bayesian Inference Framework to Reconstruct Transmission Trees Using Epidemiological and Genetic Data , 2012, PLoS Comput. Biol..

[61]  Robert P. Freckleton,et al.  Fast likelihood calculations for comparative analyses , 2012 .

[62]  M. Pérez‐Losada,et al.  Deep phylogeny and character evolution in Thecostraca (Crustacea: Maxillopoda). , 2012, Integrative and comparative biology.

[63]  Forrest W. Crawford,et al.  Unifying the spatial epidemiology and molecular evolution of emerging epidemics , 2012, Proceedings of the National Academy of Sciences.

[64]  Simon J. Greenhill,et al.  Mapping the Origins and Expansion of the Indo-European Language Family , 2012, Science.

[65]  Katrina A. Lythgoe,et al.  New insights into the evolutionary rate of HIV-1 at the within-host and epidemiological levels , 2012, Proceedings of the Royal Society B: Biological Sciences.

[66]  P. Lemey,et al.  Rates of Viral Evolution Are Linked to Host Geography in Bat Rabies , 2012, PLoS pathogens.

[67]  M. Suchard,et al.  Phylodynamics of the HIV-1 CRF02_AG clade in Cameroon. , 2012, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[68]  M. Suchard,et al.  Bayesian Phylogenetics with BEAUti and the BEAST 1.7 , 2012, Molecular biology and evolution.

[69]  Maxim Teslenko,et al.  MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.

[70]  Jan Kubelka,et al.  A Phylogenetic Analysis of Normal Modes Evolution in Enzymes and its Relationship to Enzyme Function , 2012 .

[71]  J. Benavides,et al.  Study of compartmentalization in the visna clinical form of small ruminant lentivirus infection in sheep , 2012, BMC Veterinary Research.

[72]  Daniel L. Ayres,et al.  BEAGLE: An Application Programming Interface and High-Performance Computing Library for Statistical Phylogenetics , 2011, Systematic biology.

[73]  Wai Lok Sibon Li,et al.  Model Averaging and Bayes Factor Calculation of Relaxed Molecular Clocks in Bayesian Phylogenetics , 2011, Molecular biology and evolution.

[74]  B. Shapiro,et al.  Ancient DNA , 2020, Definitions.

[75]  Beda Joos,et al.  Estimating the basic reproductive number from viral sequence data. , 2012, Molecular biology and evolution.

[76]  J Wallinga,et al.  Unravelling transmission trees of infectious diseases by combining genetic and epidemiological data , 2012, Proceedings of the Royal Society B: Biological Sciences.

[77]  Yi Guan,et al.  Temporally structured metapopulation dynamics and persistence of influenza A H3N2 virus in humans , 2011, Proceedings of the National Academy of Sciences.

[78]  P. Lemey,et al.  Analysing recombination in nucleotide sequences , 2011, Molecular ecology resources.

[79]  Claire L. Webster,et al.  Host Phylogeny Determines Viral Persistence and Replication in Novel Hosts , 2011, PLoS pathogens.

[80]  David A. Rasmussen,et al.  Inference for Nonlinear Epidemiological Models Using Genealogies and Time Series , 2011, PLoS Comput. Biol..

[81]  John J. Welch,et al.  Ancient Hybridization and an Irish Origin for the Modern Polar Bear Matriline , 2011, Current Biology.

[82]  M. Suchard,et al.  Impact of CCR5delta32 host genetic background and disease progression on HIV-1 intrahost evolutionary processes: efficient hypothesis testing through hierarchical phylogenetic models. , 2011, Molecular biology and evolution.

[83]  Marc A Suchard,et al.  A Bayesian phylogenetic method to estimate unknown sequence ages. , 2011, Molecular biology and evolution.

[84]  T Jombart,et al.  Reconstructing disease outbreaks from genetic data: a graph approach , 2010, Heredity.

[85]  Jeremy T. Fineman,et al.  Reconstruction of Evolutionary Trees , 2011, Encyclopedia of Parallel Computing.

[86]  T. Stadler Sampling-through-time in birth-death trees. , 2010, Journal of theoretical biology.

[87]  Marc A Suchard,et al.  Three roads diverged? Routes to phylogeographic inference. , 2010, Trends in ecology & evolution.

[88]  A. Telenti,et al.  Phylogenetic Approach Reveals That Virus Genotype Largely Determines HIV Set-Point Viral Load , 2010, PLoS pathogens.

[89]  M. Suchard,et al.  Bayesian random local clocks, or one rate to rule them all , 2010, BMC Biology.

[90]  Gary F. McCracken,et al.  Host Phylogeny Constrains Cross-Species Emergence and Establishment of Rabies Virus in Bats , 2010, Science.

[91]  M. Suchard,et al.  Phylogeography takes a relaxed random walk in continuous space and time. , 2010, Molecular biology and evolution.

[92]  Erik M. Volz,et al.  Viral phylodynamics and the search for an ‘effective number of infections’ , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[93]  Durrell D. Kapan,et al.  Epidemic dynamics revealed in dengue evolution. , 2010, Molecular biology and evolution.

[94]  Marc A Suchard,et al.  Unifying vertical and nonvertical evolution: a stochastic ARG-based framework. , 2010, Systematic biology.

[95]  Sergei L. Kosakovsky Pond,et al.  Phylodynamics of Infectious Disease Epidemics , 2009, Genetics.

[96]  Alexei J. Drummond,et al.  Bayesian Phylogeography Finds Its Roots , 2009, PLoS Comput. Biol..

[97]  Andrew Rambaut,et al.  Evolutionary analysis of the dynamics of viral infectious disease , 2009, Nature Reviews Genetics.

[98]  Gavin J. D. Smith,et al.  Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic , 2009, Nature.

[99]  E. Lyons,et al.  Pandemic Potential of a Strain of Influenza A (H1N1): Early Findings , 2009, Science.

[100]  Marc A. Suchard,et al.  Many-core algorithms for statistical phylogenetics , 2009, Bioinform..

[101]  Anne-Mieke Vandamme,et al.  The Phylogenetic Handbook: A Practical Approach to Phylogenetic Analysis and Hypothesis Testing , 2009 .

[102]  Marc A Suchard,et al.  Fast, accurate and simulation-free stochastic mapping , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[103]  A. Lemmon,et al.  A likelihood framework for estimating phylogeographic history on a continuous landscape. , 2008, Systematic biology.

[104]  M. Suchard,et al.  Smooth skyride through a rough skyline: Bayesian coalescent-based inference of population dynamics. , 2008, Molecular biology and evolution.

[105]  Gaël Thébaud,et al.  Integrating genetic and epidemiological data to determine transmission pathways of foot-and-mouth disease virus , 2008, Proceedings of the Royal Society B: Biological Sciences.

[106]  Albert-László Barabási,et al.  Understanding individual human mobility patterns , 2008, Nature.

[107]  Tanja Gernhard,et al.  The conditioned reconstructed process. , 2008, Journal of theoretical biology.

[108]  Paul van der Mark,et al.  Inferring dispersal: a Bayesian approach to phylogeny‐based island biogeography, with special reference to the Canary Islands , 2008 .

[109]  Leslie A Real,et al.  A high-resolution genetic signature of demographic and spatial expansion in epizootic rabies virus , 2007, Proceedings of the National Academy of Sciences.

[110]  S. Ho,et al.  Relaxed Phylogenetics and Dating with Confidence , 2006, PLoS biology.

[111]  T. Geisel,et al.  The scaling laws of human travel , 2006, Nature.

[112]  Philip E. Bourne,et al.  Structural Evolution of the Protein Kinase–Like Superfamily , 2005, PLoS Comput. Biol..

[113]  Joseph Felsenstein,et al.  Using the quantitative genetic threshold model for inferences between and within species , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[114]  O. Pybus,et al.  Bayesian coalescent inference of past population dynamics from molecular sequences. , 2005, Molecular biology and evolution.

[115]  David L. Smith Spatial Heterogeneity in Infectious Disease Epidemics , 2005 .

[116]  Monica G. Turner,et al.  Ecosystem Function in Heterogeneous Landscapes , 2005 .

[117]  J. Felsenstein Evolutionary trees from DNA sequences: A maximum likelihood approach , 2005, Journal of Molecular Evolution.

[118]  Geoff Nicholls,et al.  Using Temporally Spaced Sequences to Simultaneously Estimate Migration Rates, Mutation Rate and Population Sizes in Measurably Evolving Populations , 2004, Genetics.

[119]  S. Pääbo,et al.  Genetic analyses from ancient DNA. , 2004, Annual review of genetics.

[120]  Beth Shapiro,et al.  Rise and Fall of the Beringian Steppe Bison , 2004, Science.

[121]  M. Pagel,et al.  Bayesian estimation of ancestral character states on phylogenies. , 2004, Systematic biology.

[122]  S. Ho,et al.  Tracing the decay of the historical signal in biological sequence data. , 2004, Systematic biology.

[123]  A. Lapedes,et al.  Mapping the Antigenic and Genetic Evolution of Influenza Virus , 2004, Science.

[124]  J. Huelsenbeck,et al.  Bayesian phylogenetic analysis of combined data. , 2004, Systematic biology.

[125]  O. Pybus,et al.  Unifying the Epidemiological and Evolutionary Dynamics of Pathogens , 2004, Science.

[126]  M. Lynch,et al.  The Phylogenetic Mixed Model , 2004, The American Naturalist.

[127]  M. Suchard,et al.  Hierarchical phylogenetic models for analyzing multipartite sequence data. , 2003, Systematic biology.

[128]  A. Rodrigo,et al.  Measurably evolving populations , 2003 .

[129]  K. Strimmer,et al.  Exploring the demographic history of DNA sequences using the generalized skyline plot. , 2001, Molecular biology and evolution.

[130]  A. Raftery,et al.  Bayesian Multidimensional Scaling and Choice of Dimension , 2001 .

[131]  O. Pybus,et al.  An integrated framework for the inference of viral population history from reconstructed genealogies. , 2000, Genetics.

[132]  Z. Yang,et al.  Estimation of primate speciation dates using local molecular clocks. , 2000, Molecular biology and evolution.

[133]  Andrew Rambaut,et al.  Estimating the rate of molecular evolution: incorporating non-contemporaneous sequences into maximum likelihood phylogenies , 2000, Bioinform..

[134]  W. Ewens Genetics and analysis of quantitative traits , 1999 .

[135]  M. Pagel Inferring the historical patterns of biological evolution , 1999, Nature.

[136]  M. Pagel The Maximum Likelihood Approach to Reconstructing Ancestral Character States of Discrete Characters on Phylogenies , 1999 .

[137]  H. Kishino,et al.  Estimating the rate of evolution of the rate of molecular evolution. , 1998, Molecular biology and evolution.

[138]  D. Schluter,et al.  LIKELIHOOD OF ANCESTOR STATES IN ADAPTIVE RADIATION , 1997, Evolution; international journal of organic evolution.

[139]  M. Pagel Inferring evolutionary processes from phylogenies , 1997 .

[140]  T. F. Hansen STABILIZING SELECTION AND THE COMPARATIVE ANALYSIS OF ADAPTATION , 1997, Evolution; international journal of organic evolution.

[141]  K. Lange Reconstruction of Evolutionary Trees , 1997 .

[142]  P H Harvey,et al.  Revealing the history of infectious disease epidemics through phylogenetic trees. , 1995, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[143]  Emília P. Martins,et al.  Estimating the Rate of Phenotypic Evolution from Comparative Data , 1994, The American Naturalist.

[144]  R. Hudson Gene genealogies and the coalescent process. , 1990 .

[145]  M. Notohara,et al.  The coalescent and the genealogical process in geographically structured population , 1990, Journal of mathematical biology.

[146]  A. Grafen The phylogenetic regression. , 1989, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[147]  Jiankang Zhang,et al.  ON THE GENERALIZED BIRTH AND DEATH PROCESSES (II)––THE STAY TIME, LIMIT THEOREM AND ERGODIC PROPERTY , 1986 .

[148]  S. Tavaré Some probabilistic and statistical problems in the analysis of DNA sequences , 1986 .

[149]  J. Felsenstein Phylogenies and the Comparative Method , 1985, The American Naturalist.

[150]  Wayne P. Maddison,et al.  Outgroup Analysis and Parsimony , 1984 .

[151]  C. R. Henderson Applications of linear models in animal breeding , 1984 .

[152]  R. Hudson Properties of a neutral allele model with intragenic recombination. , 1983, Theoretical population biology.

[153]  Daniel Gianola,et al.  Theory and Analysis of Threshold Characters , 1982 .

[154]  J. Kingman On the genealogy of large populations , 1982, Journal of Applied Probability.

[155]  M. Kimura,et al.  'Stepping stone' model of population , 1953 .

[156]  D. Kendall On the Generalized "Birth-and-Death" Process , 1948 .

[157]  S. Wright,et al.  An Analysis of Variability in Number of Digits in an Inbred Strain of Guinea Pigs. , 1934, Genetics.

[158]  J. Whittemore Minimal Surfaces Applicable to Surfaces of Revolution , 1917 .

[159]  Ernst Haeckel,et al.  Generelle Morphologie der Organismen: Allgemeine Grundzüge der organischen Formen-Wissenschaft, mechanisch begründet durch die von Charles Darwin reformierte Descendenz-Theorie. Band 1: Allgemeine Anatomie. Band 2: Allgemeine Entwicklungsgeschichte , 1866 .

[160]  Ernst Haeckel Generelle morphologie der organismen. Allgemeine grundzüge der organischen formen-wissenschaft, mechanisch begründet durch die von Charles Darwin reformirte descendenztheorie, von Ernst Haeckel , 1866 .

[161]  J. Snow On the Mode of Communication of Cholera , 1856, Edinburgh medical journal.