Engineering RGB color vision into Escherichia coli.

Optogenetic tools use colored light to rapidly control gene expression in space and time. We designed a genetically encoded system that gives Escherichia coli the ability to distinguish between red, green, and blue (RGB) light and respond by changing gene expression. We use this system to produce 'color photographs' on bacterial culture plates by controlling pigment production and to redirect metabolic flux by expressing CRISPRi guide RNAs.

[1]  B. Wanner,et al.  One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[2]  G. Gambetta,et al.  Genetic engineering of phytochrome biosynthesis in bacteria , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[3]  E. Huq,et al.  A light-switchable gene promoter system , 2002, Nature Biotechnology.

[4]  Christopher A. Voigt,et al.  Synthetic biology: Engineering Escherichia coli to see light , 2005, Nature.

[5]  Wim Soetaert,et al.  Minimizing acetate formation in E. coli fermentations , 2007, Journal of Industrial Microbiology & Biotechnology.

[6]  Takashi Shimada,et al.  Cyanobacteriochrome CcaS is the green light receptor that induces the expression of phycobilisome linker protein , 2008, Proceedings of the National Academy of Sciences.

[7]  Rebecca A. Ayers,et al.  Design and signaling mechanism of light‐regulated histidine kinases , 2009, Journal of molecular biology.

[8]  Christopher A. Voigt,et al.  A Synthetic Genetic Edge Detection Program , 2009, Cell.

[9]  Priscilla E. M. Purnick,et al.  The second wave of synthetic biology: from modules to systems , 2009, Nature Reviews Molecular Cell Biology.

[10]  Herbert M Sauro,et al.  Designing and engineering evolutionary robust genetic circuits , 2010, Journal of biological engineering.

[11]  N. Rockwell,et al.  A brief history of phytochromes. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[12]  Jeffrey J. Tabor Plate-based assays for light-regulated gene expression systems. , 2011, Methods in enzymology.

[13]  Christopher A. Voigt,et al.  Multichromatic control of gene expression in Escherichia coli. , 2011, Journal of molecular biology.

[14]  Christopher A. Voigt,et al.  Genetic circuit performance under conditions relevant for industrial bioreactors. , 2012, ACS synthetic biology.

[15]  Martin Fussenegger,et al.  The use of light for engineered control and reprogramming of cellular functions. , 2012, Current opinion in biotechnology.

[16]  Christopher A. Voigt,et al.  Ribozyme-based insulator parts buffer synthetic circuits from genetic context , 2012, Nature Biotechnology.

[17]  Andreas Möglich,et al.  From dusk till dawn: one-plasmid systems for light-regulated gene expression. , 2012, Journal of molecular biology.

[18]  Christopher A. Voigt,et al.  Characterization of 582 natural and synthetic terminators and quantification of their design constraints , 2013, Nature Methods.

[19]  Taesung Kim,et al.  Switchable Gene Expression in Escherichia coli Using a Miniaturized Photobioreactor , 2013, PloS one.

[20]  Luke A. Gilbert,et al.  Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression , 2013, Cell.

[21]  Christopher A. Voigt,et al.  Genomic Mining of Prokaryotic Repressors for Orthogonal Logic Gates , 2013, Nature chemical biology.

[22]  Adam J. Meyer,et al.  A ‘resource allocator’ for transcription based on a highly fragmented T7 RNA polymerase , 2014, Molecular systems biology.

[23]  Mark Goulian,et al.  Engineering Escherichia coli for light-activated cytolysis of mammalian cells. , 2014, ACS synthetic biology.

[24]  Jeffrey J. Tabor,et al.  Refactoring and optimization of light-switchable Escherichia coli two-component systems. , 2014, ACS synthetic biology.

[25]  T. Lu,et al.  Genomically encoded analog memory with precise in vivo DNA writing in living cell populations , 2014, Science.

[26]  D. Bhattacharya,et al.  Eukaryotic algal phytochromes span the visible spectrum , 2014, Proceedings of the National Academy of Sciences.

[27]  Katsuhiro Kojima,et al.  A green-light inducible lytic system for cyanobacterial cells , 2014, Biotechnology for Biofuels.

[28]  H. Salis,et al.  A predictive biophysical model of translational coupling to coordinate and control protein expression in bacterial operons , 2015, Nucleic acids research.

[29]  David F. Savage,et al.  An open-hardware platform for optogenetics and photobiology , 2016, Scientific Reports.

[30]  J. Clarke,et al.  Reversible Optogenetic Control of Subcellular Protein Localization in a Live Vertebrate Embryo , 2016, Developmental cell.

[31]  Christopher A. Voigt,et al.  Genetic circuit design automation , 2016, Science.