Quantum Compiling

Quantum compiling fills the gap between the computing layer of high-level quantum algorithms and the layer of physical qubits with their specific properties and constraints. Quantum compiling is a hybrid between the general-purpose compilers of computers, transforming high-level language to assembly language and hardware synthesis by hardware description language, where functions are automatically synthesized into customized hardware. Here we review the quantum compiling stack of both gate model quantum computers and the adiabatic quantum computers, respectively. The former involves low level qubit control, quantum error correction, synthesis of short quantum circuits, transpiling, while the latter involves the virtualization of qubits by embedding of QUBO and HUBO problems on constrained graphs of physical qubits and both quantum error suppression and correction. Commercial initiatives and quantum compiling products are reviewed, including explicit programming examples.

[1]  Enrico Prati,et al.  A complete restricted Boltzmann machine on an adiabatic quantum computer , 2021, International Journal of Quantum Information.

[2]  Marcello Restelli,et al.  Quantum compiling by deep reinforcement learning , 2021, Communications Physics.

[3]  Costin Iancu,et al.  Towards Optimal Topology Aware Quantum Circuit Synthesis , 2020, 2020 IEEE International Conference on Quantum Computing and Engineering (QCE).

[4]  Timothy W. Finin,et al.  Post-Quantum Error-Correction for Quantum Annealers , 2020, ArXiv.

[5]  E. Prati,et al.  Optical Manipulation of Qubits by Deep Reinforcement Learning , 2020 .

[6]  Xiaobo Zhu,et al.  Superconducting quantum computing: a review , 2020, Science China Information Sciences.

[7]  E. Prati,et al.  Digitally stimulated Raman passage by deep reinforcement learning , 2020, Physics Letters A.

[8]  D. Deng,et al.  Topological Quantum Compiling with Reinforcement Learning , 2020, Physical review letters.

[9]  Enrico Prati,et al.  Quantum Semantic Learning by Reverse Annealing an Adiabatic Quantum Computer , 2020, ArXiv.

[10]  Silas Dilkes,et al.  t|ket⟩: a retargetable compiler for NISQ devices , 2020, Quantum Science and Technology.

[11]  E. Prati,et al.  Is all-electrical silicon quantum computing feasible in the long term? , 2020, Physics Letters A.

[12]  Per J. Liebermann,et al.  Software tools for quantum control: improving quantum computer performance through noise and error suppression , 2020, Quantum Science and Technology.

[13]  Marcello Restelli,et al.  Reinforcement Learning Based Control of Coherent Transport by Adiabatic Passage of Spin Qubits , 2019, Journal of Physics: Conference Series.

[14]  Daniel A. Lidar,et al.  Analog errors in quantum annealing: doom and hope , 2019, npj Quantum Information.

[15]  John Chiaverini,et al.  Trapped-ion quantum computing: Progress and challenges , 2019, Applied Physics Reviews.

[16]  Zheng An,et al.  Deep reinforcement learning for quantum gate control , 2019, EPL (Europhysics Letters).

[17]  Dario Tamascelli,et al.  Coherent transport of quantum states by deep reinforcement learning , 2019, Communications Physics.

[18]  Nicolas P. D. Sawaya,et al.  Quantum Chemistry in the Age of Quantum Computing. , 2018, Chemical reviews.

[19]  Robert Wille,et al.  Compiling SU(4) quantum circuits to IBM QX architectures , 2018, ASP-DAC.

[20]  Ryan LaRose,et al.  Overview and Comparison of Gate Level Quantum Software Platforms , 2018, Quantum.

[21]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[22]  Robert Wille,et al.  An Efficient Methodology for Mapping Quantum Circuits to the IBM QX Architectures , 2017, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[23]  A. Mandilara,et al.  Quantum compiling with diffusive sets of gates , 2017, Physical Review A.

[24]  B. Hensen,et al.  Integrated silicon qubit platform with single-spin addressability, exchange control and single-shot singlet-triplet readout , 2017, Nature Communications.

[25]  Mark Saffman,et al.  Quantum computing with neutral atoms , 2017, National science review.

[26]  Edoardo Charbon,et al.  Quantum information density scaling and qubit operation time constraints of CMOS silicon-based quantum computer architectures , 2017, npj Quantum Information.

[27]  Lyle Noakes,et al.  Generating three-qubit quantum circuits with neural networks , 2017, 1703.10743.

[28]  Dmitri Maslov,et al.  Experimental comparison of two quantum computing architectures , 2017, Proceedings of the National Academy of Sciences.

[29]  Fabián A. Chudak,et al.  Benchmarking Quantum Hardware for Training of Fully Visible Boltzmann Machines , 2016, ArXiv.

[30]  William J. Zeng,et al.  A Practical Quantum Instruction Set Architecture , 2016, ArXiv.

[31]  Matthias Troyer,et al.  A software methodology for compiling quantum programs , 2016, ArXiv.

[32]  S. Debnath,et al.  Demonstration of a small programmable quantum computer with atomic qubits , 2016, Nature.

[33]  Vasil S. Denchev,et al.  Computational multiqubit tunnelling in programmable quantum annealers , 2015, Nature Communications.

[34]  M. Benedetti,et al.  Estimation of effective temperatures in quantum annealers for sampling applications: A case study with possible applications in deep learning , 2015, 1510.07611.

[35]  Jay M. Gambetta,et al.  Building logical qubits in a superconducting quantum computing system , 2015, 1510.04375.

[36]  Simon J. Devitt,et al.  Blueprint for a microwave trapped ion quantum computer , 2015, Science Advances.

[37]  M. Amin Searching for quantum speedup in quasistatic quantum annealers , 2015, 1503.04216.

[38]  Elena Ferraro,et al.  Effective Hamiltonian for two interacting double-dot exchange-only qubits and their controlled-NOT operations , 2015, Quantum Inf. Process..

[39]  Robert Wille,et al.  Exact Reordering of Circuit Lines for Nearest Neighbor Quantum Architectures , 2014, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[40]  M. De Michielis,et al.  Effective Hamiltonian for two interacting double-dot exchange-only qubits and their controlled-NOT operations , 2014, Quantum Information Processing.

[41]  Aidan Roy,et al.  A practical heuristic for finding graph minors , 2014, ArXiv.

[42]  Yoshua Bengio,et al.  On the Challenges of Physical Implementations of RBMs , 2013, AAAI.

[43]  Daniel A. Lidar,et al.  Error-corrected quantum annealing with hundreds of qubits , 2013, Nature Communications.

[44]  Kevin C. Young,et al.  Error suppression and error correction in adiabatic quantum computation: non-equilibrium dynamics , 2013, 1307.5892.

[45]  Kevin C. Young,et al.  Error suppression and error correction in adiabatic quantum computation I: techniques and challenges , 2013, 1307.5893.

[46]  Elena Ferraro,et al.  Effective Hamiltonian for the hybrid double quantum dot qubit , 2013, Quantum Inf. Process..

[47]  Daniel A. Lidar,et al.  High-fidelity adiabatic quantum computation via dynamical decoupling , 2012, 1205.2725.

[48]  Robert Wille,et al.  Synthesis of quantum circuits for linear nearest neighbor architectures , 2011, Quantum Inf. Process..

[49]  M. W. Johnson,et al.  Quantum annealing with manufactured spins , 2011, Nature.

[50]  Manuela Herman,et al.  Quantum Computing: A Gentle Introduction , 2011 .

[51]  R. V. Meter,et al.  Layered architecture for quantum computing , 2010, 1010.5022.

[52]  M. W. Johnson,et al.  Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor , 2010, 1004.1628.

[53]  K. Brown,et al.  Multi-qubit compensation sequences , 2009, 0908.2593.

[54]  W. Munro,et al.  Quantum error correction for beginners , 2009, Reports on progress in physics. Physical Society.

[55]  M. W. Johnson,et al.  Compound Josephson-junction coupler for flux qubits with minimal crosstalk , 2009, 0904.3784.

[56]  N. C. Menicucci,et al.  Quantum Computing with Continuous-Variable Clusters , 2009, 0903.3233.

[57]  Masaki Nakanishi,et al.  An Efficient Method to Convert Arbitrary Quantum Circuits to Ones on a Linear Nearest Neighbor Architecture , 2009, 2009 Third International Conference on Quantum, Nano and Micro Technologies.

[58]  Kaveh Khodjasteh,et al.  Dynamically error-corrected gates for universal quantum computation. , 2008, Physical review letters.

[59]  H. Nishimori,et al.  Mathematical foundation of quantum annealing , 2008, 0806.1859.

[60]  Daniel A. Lidar,et al.  Towards fault tolerant adiabatic quantum computation. , 2007, Physical review letters.

[61]  H. Nishimori,et al.  Convergence of Quantum Annealing with Real-Time Schrodinger Dynamics(General) , 2007, quant-ph/0702252.

[62]  P. Shor,et al.  Error Correcting Codes For Adiabatic Quantum Computation , 2005, quant-ph/0512170.

[63]  R. Raussendorf,et al.  A fault-tolerant one-way quantum computer , 2005, quant-ph/0510135.

[64]  M. Nielsen,et al.  The Solovay-Kitaev algorithm , 2005, Quantum Inf. Comput..

[65]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[66]  Colin P. Williams,et al.  Optimal Quantum Circuits for General Two-Qubit Gates , 2003, quant-ph/0308006.

[67]  Endre Boros,et al.  Pseudo-Boolean optimization , 2002, Discret. Appl. Math..

[68]  E. Farhi,et al.  Quantum Adiabatic Evolution Algorithms versus Simulated Annealing , 2002, quant-ph/0201031.

[69]  B. Recht,et al.  Efficient discrete approximations of quantum gates , 2001, quant-ph/0111031.

[70]  S. Sarma,et al.  Decoherence and dephasing in spin-based solid state quantum computers , 2001, cond-mat/0108339.

[71]  Henri E. Bal,et al.  Modern Compiler Design , 2000, Springer New York.

[72]  Vijay Patel,et al.  Quantum superposition of distinct macroscopic states , 2000, Nature.

[73]  Michael H. Freedman Poly-Locality in Quantum Computing , 2000, Found. Comput. Math..

[74]  E. Knill,et al.  Dynamical Decoupling of Open Quantum Systems , 1998, Physical Review Letters.

[75]  John Preskill,et al.  Topological Quantum Computation , 1998, QCQC.

[76]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[77]  D. Gottesman Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.

[78]  P. Shor,et al.  Quantum Computers , 2021, Advanced Sciences and Technologies for Security Applications.

[79]  Lloyd,et al.  Almost any quantum logic gate is universal. , 1995, Physical review letters.

[80]  D. Deutsch,et al.  Universality in quantum computation , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[81]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[82]  H. Zimmermann,et al.  OSI Reference Model - The ISO Model of Architecture for Open Systems Interconnection , 1980, IEEE Transactions on Communications.

[83]  J. E. Zimmerman,et al.  Macroscopic Quantum Interference Effects through Superconducting Point Contacts , 1966 .

[84]  Robert Wille,et al.  Look-ahead schemes for nearest neighbor optimization of 1D and 2D quantum circuits , 2016, 2016 21st Asia and South Pacific Design Automation Conference (ASP-DAC).

[85]  Misha Denil Toward the Implementation of a Quantum RBM , 2011 .

[86]  D. McMahon Adiabatic Quantum Computation , 2008 .

[87]  Desmond P. Taylor,et al.  OSI Reference Model - The ISO Model of Architecture for Open Systems Interconnection , 2007 .

[88]  K A Puntillo,et al.  The second step. , 1982, Imprint.