Learning from Target Knowledge Approximation

The classical least squares error (LSE) learning method for pattern classification is to learn a classifier based on data density where the learning process (density-fitting error minimization) and the learning objective (classification error rate) do not find a good match. In this work, we propose to learn according to classification decision objectives directly. We shall work on two classification objectives namely, the total error rate and the receiver operating characteristics, and directly optimize the learning process according to these objectives. Using a learning model which is linear in its parameters, we propose two approximation methods to optimize these classification objectives. Our empirical results on biometrics fusion show comparable performances of the proposed methods with the widely used support vector machines (SVM), with one of the approaches having a clear advantage of fast single-step solution

[1]  Xudong Jiang,et al.  Detecting the fingerprint minutiae by adaptive tracing the gray-level ridge , 2001, Pattern Recognit..

[2]  Peter A. Flach The Geometry of ROC Space: Understanding Machine Learning Metrics through ROC Isometrics , 2003, ICML.

[3]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[4]  Lakhmi C. Jain,et al.  Introduction to fingerprint recognition , 2000 .

[5]  Alain Rakotomamonjy,et al.  Optimizing Area Under Roc Curve with SVMs , 2004, ROCAI.

[6]  Jürgen Schürmann,et al.  Pattern classification , 2008 .

[7]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[8]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[9]  Geoffrey J. Gordon Generalized^2 Linear^2 Models , 2002, NIPS 2002.

[10]  Biing-Hwang Juang,et al.  Fundamentals of speech recognition , 1993, Prentice Hall signal processing series.

[11]  A. Rakotomamonjy Support Vector Machines and Area Under ROC curve , 2004 .

[12]  Kar-Ann Toh,et al.  Benchmarking a reduced multivariate polynomial pattern classifier , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  J.M. Naik,et al.  Speaker verification: a tutorial , 1990, IEEE Communications Magazine.

[14]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Michael C. Mozer,et al.  Prodding the ROC Curve: Constrained Optimization of Classifier Performance , 2001, NIPS.

[16]  Wei Xiong,et al.  Combining Fingerprint and Hand-Geometry Verification Decisions , 2003, AVBPA.

[17]  Geoffrey J. Gordon Generalized2 Linear2 Models , 2002, NIPS.

[18]  Michael C. Mozer,et al.  Optimizing Classifier Performance via an Approximation to the Wilcoxon-Mann-Whitney Statistic , 2003, ICML.

[19]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[20]  David G. Stork,et al.  Pattern Classification , 1973 .

[21]  Sharath Pankanti,et al.  An identity-authentication system using fingerprints , 1997, Proc. IEEE.

[22]  Xudong Jiang,et al.  Fingerprint minutiae matching based on the local and global structures , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[23]  Kar-Ann Toh,et al.  Fingerprint and speaker verification decisions fusion , 2003, 12th International Conference on Image Analysis and Processing, 2003.Proceedings..

[24]  Anil K. Jain,et al.  On-line fingerprint verification , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[25]  Anil K. Jain,et al.  A Real-Time Matching System for Large Fingerprint Databases , 1996, IEEE Trans. Pattern Anal. Mach. Intell..