Carbohydrate Uptake and Metabolism

The genes encoding the polysaccharide-hydrolyzing enzymes are often organized in an operon or regulon together with genes that encode the enzymes catalyzing the uptake of the extracellular hydrolytic products and the first intracellular steps in their catabolism. The Bacillus subtilis genome encodes about 23 secondary and 11 ATP-binding cassette (ABC) carbohydrate transporters. The major facilitator superfamily (MFS) comprises eight B. subtilis proteins of unknown carbohydrate specificity exhibiting significant similarity to the GalP/XylE subfamily. The genes encoding the polysaccharide-hydrolyzing enzymes are often organized in an operon or regulon together with genes that encode the enzymes catalyzing the uptake of the extracellular hydrolytic products and the first intracellular steps in their catabolism. Glycolysis is one of the most conserved metabolic pathways in living organisms. To conserve cellular resources, expression of most of the hundreds of carbohydrate catabolism genes is induced only when the corresponding carbohydrate is present in the growth medium. Expression of antiterminator-controlled genes or operons usually occurs from a constitutive promoter; transcription stops at a terminator located in the leader region of these genes and operons, providing very short transcripts. The carbohydrate transport systems operative in gram-positive and gram-negative bacteria are very similar and most likely developed early in evolution.

[1]  W. Nicholson,et al.  Catabolite repression-resistant mutations of the Bacillus subtilis alpha-amylase promoter affect transcription levels and are in an operator-like sequence. , 1987, Journal of molecular biology.

[2]  Rutberg Antitermination of transcription of catabolic operons , 1997, Molecular microbiology.

[3]  R. Burne,et al.  Regulation of Expression of the Fructan Hydrolase Gene of Streptococcus mutans GS-5 by Induction and Carbon Catabolite Repression , 1999, Journal of bacteriology.

[4]  C. Moran,et al.  Regulation of Hexuronate Utilization inBacillus subtilis , 1999, Journal of bacteriology.

[5]  N. Schnell,et al.  Characterization of an HPr Kinase Mutant ofStaphylococcus xylosus , 2000, Journal of bacteriology.

[6]  A. Fouet,et al.  Bacillus subtilis sucrose-specific enzyme II of the phosphotransferase system: expression in Escherichia coli and homology to enzymes II from enteric bacteria. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[7]  M. Arnaud,et al.  PRD — a protein domain involved in PTS‐dependent induction and carbon catabolite repression of catabolic operons in bacteria , 1998, Molecular microbiology.

[8]  M. Saier,et al.  Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis , 1994, Journal of bacteriology.

[9]  S. Ehrlich,et al.  An Operon for a Putative ATP-Binding Cassette Transport System Involved in Acetoin Utilization ofBacillus subtilis , 2000, Journal of bacteriology.

[10]  S. Gelvin,et al.  Genetic and molecular analyses of picA, a plant-inducible locus on the Agrobacterium tumefaciens chromosome , 1991, Journal of bacteriology.

[11]  W. Hillen,et al.  Cooperative and non-cooperative DNA binding modes of catabolite control protein CcpA from Bacillus megaterium result from sensing two different signals. , 1997, Journal of molecular biology.

[12]  W. Nicholson,et al.  Molecular cloning of cis-acting regulatory alleles of the Bacillus subtilis amyR region by using gene conversion transformation , 1986, Journal of bacteriology.

[13]  Dephosphorylation of the Escherichia coli Transcriptional Antiterminator BglG by the Sugar Sensor BglF Is the Reversal of Its Phosphorylation , 2000, Journal of bacteriology.

[14]  W. Hillen,et al.  Identification of a co‐repressor binding site in catabolite control protein CcpA , 1998, Molecular microbiology.

[15]  G. Shaw,et al.  Cloning, Expression, and Catabolite Repression of a Gene Encoding β-Galactosidase of Bacillus megateriumATCC 14581 , 1998 .

[16]  H. Hottinger,et al.  Lactose metabolism in Lactobacillus bulgaricus: analysis of the primary structure and expression of the genes involved , 1991, Journal of bacteriology.

[17]  M. Saier,et al.  Regulation of sugar uptake via the phosphoenolpyruvate-dependent phosphotransferase systems in Bacillus subtilis and Lactococcus lactis is mediated by ATP-dependent phosphorylation of seryl residue 46 in HPr , 1996, Journal of bacteriology.

[18]  W. Hillen,et al.  Protein kinase‐dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in Gram‐positive bacteria , 1995, Molecular microbiology.

[19]  J. Deutscher,et al.  Glycerol transport and phosphoenolpyruvate-dependent enzyme I- and HPr-catalysed phosphorylation of glycerol kinase in Thermus flavus. , 1999, Microbiology.

[20]  A. Goffeau,et al.  The complete genome sequence of the Gram-positive bacterium Bacillus subtilis , 1997, Nature.

[21]  S. Schönert,et al.  Identification and Enzymatic Characterization of the Maltose-Inducible α-Glucosidase MalL (Sucrase-Isomaltase-Maltase) of Bacillus subtilis , 1998, Journal of bacteriology.

[22]  M H Saier,et al.  Novel phosphotransferase system genes revealed by genome analysis - the complete complement of PTS proteins encoded within the genome of Bacillus subtilis. , 1999, Microbiology.

[23]  M. Dahl,et al.  Analysis of DNA flanking the treA gene of Bacillus subtilis reveals genes encoding a putative specific enzyme IITre and a potential regulator of the trehalose operon. , 1996, Gene.

[24]  M. Dahl,et al.  The Glucose Kinase of Bacillus subtilis , 1998, Journal of bacteriology.

[25]  M. Zagorec,et al.  Phosphoenolpyruvate:sugar phosphotransferase system of Bacillus subtilis: nucleotide sequence of ptsX, ptsH and the 5’‐end of ptsl and evidence for a ptsHI operon , 1989, Molecular microbiology.

[26]  B. Magasanik,et al.  The pathway of myo-inositol degradation in Aerobacter aerogenes. Conversion of 2-deoxy-5-keto-D-gluconic acid to glycolytic intermediates. , 1971, The Journal of biological chemistry.

[27]  M. Saier,et al.  Regulation of glycerol uptake by the phosphoenolpyruvate-sugar phosphotransferase system in Bacillus subtilis , 1984, Journal of bacteriology.

[28]  C. Rivolta,et al.  A novel protein kinase that controls carbon catabolite repression in bacteria , 1998, Molecular microbiology.

[29]  M. Voskuil,et al.  NADP, corepressor for the Bacillus catabolite control protein CcpA. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[30]  M. Weickert,et al.  Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[31]  A. di Pietro,et al.  The HPr Kinase from Bacillus subtilis Is a Homo-oligomeric Enzyme Which Exhibits Strong Positive Cooperativity for Nucleotide and Fructose 1,6-Bisphosphate Binding* , 2000, The Journal of Biological Chemistry.

[32]  K. Beyreuther,et al.  Streptococcal phosphoenolpyruvate-sugar phosphotransferase system: amino acid sequence and site of ATP-dependent phosphorylation of HPr. , 1986, Biochemistry.

[33]  W. Hillen,et al.  Analysis of CcpA mutations defective in carbon catabolite repression in Bacillus megaterium. , 1997, FEMS microbiology letters.

[34]  L. Beijer,et al.  Mutations in the glycerol kinase gene restore the ability of a ptsGHI mutant of Bacillus subtilis to grow on glycerol. , 1995, Microbiology.

[35]  T. Ferenci,et al.  Molecular cloning of a maltose transport gene from Bacillus stearothermophilus and its expression in Escherichia coli K-12 , 1994, Molecular and General Genetics MGG.

[36]  A. Ogiwara,et al.  Evaluation and characterization of catabolite-responsive elements (cre) of Bacillus subtilis. , 2000, Nucleic acids research.

[37]  B. Snel,et al.  Pathway alignment: application to the comparative analysis of glycolytic enzymes. , 1999, The Biochemical journal.

[38]  L. Wray,et al.  Expression of the Bacillus subtilis acsAGene: Position and Sequence Context Affect cre-Mediated Carbon Catabolite Repression , 1998, Journal of bacteriology.

[39]  M. Débarbouillé,et al.  Interactions of wild-type and truncated LevR of Bacillus subtilis with the upstream activating sequence of the levanase operon. , 1994, Journal of molecular biology.

[40]  J. Deutscher,et al.  Stimulation of dihydroxyacetone and glycerol kinase activity in Streptococcus faecalis by phosphoenolpyruvate-dependent phosphorylation catalyzed by enzyme I and HPr of the phosphotransferase system , 1986, Journal of bacteriology.

[41]  S. Ehrlich,et al.  The kdgRKAT operon of Bacillus subtilis: detection of the transcript and regulation by the kdgR and ccpA genes. , 1998, Microbiology.

[42]  G. Rapoport,et al.  Two different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon , 1995, Journal of bacteriology.

[43]  I. Paulsen,et al.  CcpB, a Novel Transcription Factor Implicated in Catabolite Repression in Bacillus subtilis , 1998, Journal of bacteriology.

[44]  A. Düsterhöft,et al.  Analysis of the Bacillus subtilis genome: cloning and nucleotide sequence of a 62 kb region between 275° (rrnB) and 284° (pai) , 1997 .

[45]  F. Denizot,et al.  Isolation and characterization of the lacA gene encoding beta-galactosidase in Bacillus subtilis and a regulator gene, lacR , 1997, Journal of bacteriology.

[46]  Y. Fujita,et al.  Organization and transcription of the gluconate operon, gnt, of Bacillus subtilis. , 1986, The Journal of biological chemistry.

[47]  V. Monedero,et al.  Mutations lowering the phosphatase activity of HPr kinase/phosphatase switch off carbon metabolism , 2001, The EMBO journal.

[48]  S. Hastrup ANALYSIS OF THE BACILLUS SUBTILIS XYLOSE REGULON , 1988 .

[49]  G. Rapoport,et al.  Antagonistic effects of dual PTS‐catalysed phosphorylation on the Bacillus subtilis transcriptional activator LevR , 1998, Molecular microbiology.

[50]  Michael Hecker,et al.  Role of CcpA in Regulation of the Central Pathways of Carbon Catabolism in Bacillus subtilis , 1999, Journal of bacteriology.

[51]  J. Fradette,et al.  Phenotypic Consequences Resulting from a Methionine-to-Valine Substitution at Position 48 in the HPr Protein of Streptococcus salivarius , 1999, Journal of bacteriology.

[52]  V. Monedero,et al.  Enzyme I and HPr from Lactobacillus casei: their role in sugar transport, carbon catabolite repression and inducer exclusion , 2000, Molecular microbiology.

[53]  A Wright,et al.  Positive and negative regulation of the bgl operon in Escherichia coli , 1987, Journal of bacteriology.

[54]  H. Takahashi,et al.  Inducer exclusion in Escherichia coli by non‐PTS substrates: the role of the PEP to pyruvate ratio in determining the phosphorylation state of enzyme IIAGlc , 1998, Molecular microbiology.

[55]  I. Paulsen,et al.  Characterization of Glucose-Specific Catabolite Repression-Resistant Mutants of Bacillus subtilis: Identification of a Novel Hexose:H+ Symporter , 1998, Journal of bacteriology.

[56]  B. Poolman,et al.  HPr(His∼P)-mediated Phosphorylation Differently Affects Counterflow and Proton Motive Force-driven Uptake via the Lactose Transport Protein of Streptococcus thermophilus * , 2000, The Journal of Biological Chemistry.

[57]  L. Wray,et al.  Catabolite repression of the Bacillus subtilis hut operon requires a cis-acting site located downstream of the transcription initiation site , 1994, Journal of bacteriology.

[58]  M. Arnaud,et al.  Regulation of the sacPA operon of Bacillus subtilis: identification of phosphotransferase system components involved in SacT activity , 1992, Journal of bacteriology.

[59]  Y. Fujita,et al.  Sequencing of a 65 kb region of the Bacillus subtilis genome containing the lic and cel loci, and creation of a 177 kb contig covering the gnt-sacXY region. , 1996, Microbiology.

[60]  J. Deutscher,et al.  The hprK gene of Enterococcus faecalis encodes a novel bifunctional enzyme: the HPr kinase/phosphatase , 1999, Molecular microbiology.

[61]  B. Henrissat,et al.  The gene glvA of Bacillus subtilis 168 encodes a metal-requiring, NAD(H)-dependent 6-phospho-alpha-glucosidase. Assignment to family 4 of the glycosylhydrolase superfamily. , 1998, The Journal of biological chemistry.

[62]  W. D. de Vos,et al.  The lactose transporter in Leuconostoc lactis is a new member of the LacS subfamily of galactoside-pentose-hexuronide translocators , 1996, Applied and environmental microbiology.

[63]  C. Moran,et al.  A sigma E dependent operon subject to catabolite repression during sporulation in Bacillus subtilis , 1996, Journal of bacteriology.

[64]  S. Adhya,et al.  A family of bacterial regulators homologous to Gal and Lac repressors. , 1992, The Journal of biological chemistry.

[65]  H. Engelberg-Kulka,et al.  The Localization of the Phosphorylation Site of BglG, the Response Regulator of the Escherichia coli bgl Sensory System* , 1997, The Journal of Biological Chemistry.

[66]  M. Débarbouillé,et al.  Levanase operon of Bacillus subtilis includes a fructose-specific phosphotransferase system regulating the expression of the operon. , 1990, Journal of molecular biology.

[67]  D. le Coq,et al.  A ribonucleic antiterminator sequence (RAT) and a distant palindrome are both involved in sucrose induction of the Bacillus subtilis sacXY regulatory operon. , 1995, Microbiology.

[68]  Y. Fujita,et al.  Identification and Expression of the Bacillus subtilis Fructose-1,6-Bisphosphatase Gene (fbp) , 1998, Journal of bacteriology.

[69]  M. Wittekind,et al.  Common structural changes accompany the functional inactivation of HPr by seryl phosphorylation or by serine to aspartate substitution. , 1989, Biochemistry.

[70]  M. Saier,et al.  Analysis of a cis-active sequence mediating catabolite repression in gram-positive bacteria. , 1994, Research in microbiology.

[71]  Joseph W. Kloepper,et al.  Free-living bacterial inocula for enhancing crop productivity , 1989 .

[72]  P. Setlow,et al.  Levels of oxidized and reduced pyridine nucleotides in dormant spores and during growth, sporulation, and spore germination of Bacillus megaterium , 1977, Journal of bacteriology.

[73]  J. Deutscher,et al.  Phosphorylation of HPr and Crh by HprK, Early Steps in the Catabolite Repression Signalling Pathway for the Bacillus subtilis Levanase Operon , 1999, Journal of bacteriology.

[74]  W. Konings,et al.  Catabolite Repression and Induction of the Mg2+-Citrate Transporter CitM of Bacillus subtilis , 2000, Journal of bacteriology.

[75]  B. Rutberg,et al.  Expression of the gene encoding glycerol‐3‐phosphate dehydrogenase (glpD) in Bacillus subtilis is controlled by antitermination , 1991, Molecular microbiology.

[76]  A Danchin,et al.  Detecting and analyzing DNA sequencing errors: toward a higher quality of the Bacillus subtilis genome sequence. , 1999, Genome research.

[77]  T. Conway,et al.  Molecular genetic characterization of the Escherichia coli gntT gene of GntI, the main system for gluconate metabolism , 1997, Journal of bacteriology.

[78]  R. Klevit,et al.  Binding of the Catabolite Repressor Protein CcpA to Its DNA Target Is Regulated by Phosphorylation of its Corepressor HPr* , 1997, The Journal of Biological Chemistry.

[79]  P. Youngman,et al.  A Homolog of CcpA Mediates Catabolite Control in Listeria monocytogenes but Not Carbon Source Regulation of Virulence Genes , 1998 .

[80]  V. Monedero,et al.  Catabolite regulation of the cytochrome c550-encoding Bacillus subtilis cccA gene. , 2001, Journal of molecular microbiology and biotechnology.

[81]  J. R. Klein,et al.  PepR1, a CcpA-like transcription regulator of Lactobacillus delbrueckii subsp. lactis. , 1999, Microbiology.

[82]  J. Deutscher,et al.  New protein kinase and protein phosphatase families mediate signal transduction in bacterial catabolite repression. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[83]  G. Robillard,et al.  Cloning, expression, and isolation of the mannitol transport protein from the thermophilic bacterium Bacillus stearothermophilus , 1996, Journal of bacteriology.

[84]  H. Taber,et al.  Catabolite Regulation of the Bacillus subtilis ctaBCDEF Gene Cluster , 1998, Journal of Bacteriology.

[85]  T. Henkin,et al.  Catabolite regulation of Bacillus subtilis acetate and acetoin utilization genes by CcpA , 1994, Journal of bacteriology.

[86]  W. Hillen,et al.  Catabolite repression of the Bacillus subtilis xyl operon involves a cis element functional in the context of an unrelated sequence, and glucose exerts additional xylR-dependent repression , 1994, Journal of bacteriology.

[87]  A. Cozzone,et al.  Regulation of acetate metabolism by protein phosphorylation in enteric bacteria. , 1998, Annual review of microbiology.

[88]  M. Steinmetz,et al.  Phosphoenolpyruvate:sugar phosphotransferase system of Bacillus subtilis: cloning of the region containing the ptsH and ptsI genes and evidence for a crr-like gene , 1987, Journal of bacteriology.

[89]  P. Postma,et al.  Regulation of expression of the Lactobacillus pentosus xylAB operon , 1997, Journal of bacteriology.

[90]  J. Stülke,et al.  Regulation of the Bacillus subtilis GlcT Antiterminator Protein by Components of the Phosphotransferase System , 1998, Journal of bacteriology.

[91]  M. Hecker,et al.  Transcriptional analysis of bglPH expression in Bacillus subtilis: evidence for two distinct pathways mediating carbon catabolite repression , 1996, Journal of bacteriology.

[92]  M. Hecker,et al.  Regulation of the activity of the Bacillus subtilis antiterminator LicT by multiple PEP‐dependent, enzyme I‐ and HPr‐catalysed phosphorylation , 1999, Molecular microbiology.

[93]  T. Yoshimoto,et al.  Thermostable glycerol kinase from Thermus flavus: cloning, sequencing, and expression of the enzyme gene. , 1998, Biochimica et biophysica acta.

[94]  K. Devine,et al.  Analysis of a ribose transport operon from Bacillus subtilis. , 1994, Microbiology.

[95]  L. Wray,et al.  trans-Acting Factors Affecting Carbon Catabolite Repression of the hut Operon inBacillus subtilis , 1999, Journal of bacteriology.

[96]  J. Monod,et al.  Recherches sur la croissance des cultures bactériennes , 1942 .

[97]  M. Saier,et al.  Allosteric regulation of the glucose:H+ symporter of Lactobacillus brevis: cooperative binding of glucose and HPr(ser-P) , 1995, Journal of bacteriology.

[98]  F. Siñeriz,et al.  Characteristics of an inulinase produced by Bacillus subtilis 430A, a strain isolated from the rhizosphere of Vernonia herbacea (Vell Rusby) , 1991, Applied and environmental microbiology.

[99]  H. de Lencastre,et al.  The Bacillus subtilis L-arabinose (ara) operon: nucleotide sequence, genetic organization and expression. , 1997, Microbiology.

[100]  L. Beijer,et al.  Glycerol catabolism in Bacillus subtilis: nucleotide sequence of the genes encoding glycerol kinase (glpK) and glycerol-3-phosphate dehydrogenase (glpD). , 1990, Journal of general microbiology.

[101]  M. Saier,et al.  Multiple Phosphorylation of SacY, a Bacillus subtilisTranscriptional Antiterminator Negatively Controlled by the Phosphotransferase System* , 1997, The Journal of Biological Chemistry.

[102]  W. Weyler,et al.  Catabolite repression mediated by the CcpA protein in Bacillus subtilis: novel modes of regulation revealed by whole‐genome analyses , 2001, Molecular microbiology.

[103]  W. Hillen,et al.  Catabolite repression of the operon for xylose utilization from Bacillus subtilis W23 is mediated at the level of transcription and depends on a cis site in the xylA reading frame , 1991, Molecular and General Genetics MGG.

[104]  R. Brückner,et al.  Catabolite repression mediated by the catabolite control protein CcpA in Staphylococcus xylosus , 1996, Molecular microbiology.

[105]  M. Saier,et al.  ATP-dependent protein kinase-catalyzed phosphorylation of a seryl residue in HPr, a phosphate carrier protein of the phosphotransferase system in Streptococcus pyogenes. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[106]  S. Aymerich,et al.  Specificity determinants and structural features in the RNA target of the bacterial antiterminator proteins of the BglG/SacY family. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[107]  I. Sá-Nogueira,et al.  Cloning, functional analysis, and transcriptional regulation of the Bacillus subtilis araE gene involved in L-arabinose utilization , 1997, Journal of bacteriology.

[108]  H. Fiegler,et al.  Identification of a Gene in Staphylococcus xylosus Encoding a Novel Glucose Uptake Protein , 1999, Journal of bacteriology.

[109]  J. Deutscher,et al.  Bacterial phosphoenolpyruvate-dependent phosphotransferase system: P-Ser-HPr and its possible regulatory function? , 1984, Biochemistry.

[110]  Y. Fujita,et al.  Specific recognition of the Bacillus subtilis gnt cis‐acting catabolite‐responsive element by a protein complex formed between CcpA and seryl‐phosphorylated HPr , 1995, Molecular microbiology.

[111]  R. Ye,et al.  Transcriptional regulation of the Bacillus subtilis glucitol dehydrogenase gene , 1994, Journal of bacteriology.

[112]  M. Arnaud,et al.  In Vitro Reconstitution of Transcriptional Antitermination by the SacT and SacY Proteins of Bacillus subtilis* , 1996, The Journal of Biological Chemistry.

[113]  M. Hecker,et al.  Regulation of the lic Operon ofBacillus subtilis and Characterization of Potential Phosphorylation Sites of the LicR Regulator Protein by Site-Directed Mutagenesis , 1999, Journal of bacteriology.

[114]  D. le Coq,et al.  New beta-glucoside (bgl) genes in Bacillus subtilis: the bglP gene product has both transport and regulatory functions similar to those of BglF, its Escherichia coli homolog , 1995, Journal of bacteriology.

[115]  Moir,et al.  The expression of the protective antigen of Bacillusanthracis in Bacillus subtilis , 1998, Journal of applied microbiology.

[116]  W. Nicholson,et al.  Isolation and characterization of a cis-acting mutation conferring catabolite repression resistance to alpha-amylase synthesis in Bacillus subtilis , 1985, Journal of bacteriology.

[117]  S. Cutting,et al.  Identification of a new σB-controlled gene, csbX, in Bacillus subtilis , 1997 .

[118]  Y. Fujita,et al.  Possible function and some properties of the CcpA protein of Bacillus subtilis. , 1994, Microbiology.

[119]  A. Danchin,et al.  Catabolite Regulation of the pta Gene as Part of Carbon Flow Pathways in Bacillus subtilis , 1999, Journal of bacteriology.

[120]  V. Monedero,et al.  Catabolite repression in Lactobacillus casei ATCC 393 is mediated by CcpA , 1997, Journal of bacteriology.

[121]  V. de Lorenzo,et al.  Clues and consequences of DNA bending in transcription. , 1997, Annual review of microbiology.

[122]  S. E. Mainzer,et al.  Lactose transport system of Streptococcus thermophilus: a hybrid protein with homology to the melibiose carrier and enzyme III of phosphoenolpyruvate-dependent phosphotransferase systems , 1989, Journal of bacteriology.

[123]  J. Deutscher,et al.  Staphylococcal phosphoenolpyruvate-dependent phosphotransferase system: purification and characterization of the mannitol-specific enzyme IIImtl of Staphylococcus aureus and Staphylococcus carnosus and homology with the enzyme IImtl of Escherichia coli. , 1988, Biochemistry.

[124]  M. Hecker,et al.  Regulation of xylanolytic enzymes in Bacillus subtilis. , 1994, Microbiology.

[125]  M. Saier,et al.  Functional interactions between proteins of the phosphoenolpyruvate:sugar phosphotransferase systems of Bacillus subtilis and Escherichia coli. , 1992, The Journal of biological chemistry.

[126]  L Beijer,et al.  The glpP and glpF genes of the glycerol regulon in Bacillus subtilis. , 1993, Journal of general microbiology.

[127]  W. Hillen,et al.  Contributions of Xy1R, CcpA and HPr to catabolite repression of the xyl operon in Bacillus subtilis , 1995 .

[128]  A. Sonenshein,et al.  CcpC, a novel regulator of the LysR family required for glucose repression of the citB gene in Bacillus subtilis. , 2000, Journal of molecular biology.

[129]  M. Rose,et al.  Induction of the Bacillus subtilis ptsGHI operon by glucose is controlled by a novel antiterminator, GlcT , 1997, Molecular microbiology.

[130]  B. Shin,et al.  Regulation of the Bacillus subtilis phosphotransacetylase gene. , 1999, Journal of biochemistry.

[131]  C Rivolta,et al.  A 35.7 kb DNA fragment from the Bacillus subtilis chromosome containing a putative 12.3 kb operon involved in hexuronate catabolism and a perfectly symmetrical hypothetical catabolite-responsive element. , 1998, Microbiology.

[132]  M. Voskuil,et al.  Significance of HPr in catabolite repression of alpha-amylase , 1996, Journal of bacteriology.

[133]  M. Kleerebezem,et al.  In vivo nuclear magnetic resonance studies of glycolytic kinetics in Lactococcus lactis. , 1999, Biotechnology and bioengineering.

[134]  M. De Felice,et al.  Expression of the bglH Gene ofLactobacillus plantarum Is Controlled by Carbon Catabolite Repression , 1998, Journal of bacteriology.

[135]  B. Bauer,et al.  Regulation of glycerol metabolism in Enterococcus faecalis by phosphoenolpyruvate-dependent phosphorylation of glycerol kinase catalyzed by enzyme I and HPr of the phosphotransferase system , 1993, Journal of bacteriology.

[136]  R. Ye,et al.  Glucitol induction in Bacillus subtilis is mediated by a regulatory factor, GutR , 1994, Journal of bacteriology.

[137]  T. Henkin,et al.  Transcriptional Activation of the Bacillus subtilis ackA Gene Requires Sequences Upstream of the Promoter , 1998, Journal of bacteriology.

[138]  M. Strauch,et al.  AbrB modulates expression and catabolite repression of a Bacillus subtilis ribose transport operon , 1995, Journal of bacteriology.

[139]  P. Tavares,et al.  Mode of action of AraR, the key regulator of l‐arabinose metabolism in Bacillus subtilis , 1999, Molecular microbiology.

[140]  P. Postma,et al.  The glucose permease of the phosphotransferase system of Bacillus subtilis: evidence for IIGlc and IIIGlc domains , 1991, Molecular microbiology.

[141]  G. Robillard,et al.  The Bacillus stearothermophilus Mannitol Regulator, MtlR, of the Phosphotransferase System , 1999, The Journal of Biological Chemistry.

[142]  M. Saier,et al.  Cooperative binding of lactose and the phosphorylated phosphocarrier protein HPr(Ser-P) to the lactose/H+ symport permease of Lactobacillus brevis. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[143]  S. Lee,et al.  Two genes from Bacillus subtilis under the sole control of the general stress transcription factor sigmaB. , 1999, Microbiology.

[144]  G. Robillard,et al.  Multiple Phosphorylation Events Regulate the Activity of the Mannitol Transcriptional Regulator MtlR of the Bacillus stearothermophilus Phosphoenolpyruvate-dependent Mannitol Phosphotransferase System* , 2000, The Journal of Biological Chemistry.

[145]  S. Aymerich,et al.  Nucleotide sequence of the sacS locus of Bacillus subtilis reveals the presence of two regulatory genes. , 1990, Gene.

[146]  P. Glaser,et al.  Identification and Characterization of a New b-Glucoside Utilization System inBacillus subtilis , 1997 .

[147]  W. D. de Vos,et al.  Transcriptional activation of the glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA , 1998, Molecular microbiology.

[148]  Y. Fujita,et al.  Organization and transcription of the myo-inositol operon, iol, of Bacillus subtilis , 1997, Journal of Bacteriology.

[149]  Y. Fujita,et al.  Catabolite repression of inositol dehydrogenase and gluconate kinase syntheses in Bacillus subtilis. , 1984, Biochimica et biophysica acta.

[150]  V. Monedero,et al.  Phosphorylation of HPr by the Bifunctional HPr Kinase/P-Ser-HPr Phosphatase from Lactobacillus casei Controls Catabolite Repression and Inducer Exclusion but Not Inducer Expulsion , 2000, Journal of bacteriology.

[151]  M. Hecker,et al.  Identification and characterization of a new beta-glucoside utilization system in Bacillus subtilis , 1997, Journal of bacteriology.

[152]  J. Deutscher,et al.  Cloning and Sequencing of two Enterococcal glpKGenes and Regulation of the Encoded Glycerol Kinases by Phosphoenolpyruvate-dependent, Phosphotransferase System-catalyzed Phosphorylation of a Single Histidyl Residue* , 1997, The Journal of Biological Chemistry.

[153]  W. Nicholson,et al.  Catabolite repression of α amylase gene expression in Bacillus subtilis involves a trans‐acting gene product homologous to the Escherichia coli lacl and galR repressors , 1991, Molecular microbiology.

[154]  M. Hecker,et al.  Regulation of the putative bglPH operon for aryl-beta-glucoside utilization in Bacillus subtilis , 1995, Journal of bacteriology.

[155]  J. Deutscher,et al.  Protein phosphorylation chain of a Bacillus subtilis fructose-specific phosphotransferase system and its participation in regulation of the expression of the lev operon. , 1997, Biochemistry.

[156]  J. Deutscher,et al.  The Bacillus subtilis crh gene encodes a HPr-like protein involved in carbon catabolite repression. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[157]  J. Deutscher,et al.  Antitermination by GlpP, catabolite repression via CcpA and inducer exclusion triggered by P~GlpK dephosphorylation control Bacillus subtilis glpFK expression , 2002, Molecular microbiology.

[158]  J. Lopez,et al.  Role of sugar uptake and metabolic intermediates on catabolite repression in Bacillus subtilis , 1977, Journal of bacteriology.

[159]  S. Aymerich,et al.  Two Glyceraldehyde-3-phosphate Dehydrogenases with Opposite Physiological Roles in a Nonphotosynthetic Bacterium* , 2000, The Journal of Biological Chemistry.

[160]  J. Deutscher,et al.  Site-directed mutagenesis with the ptsH gene of Bacillus subtilis. Isolation and characterization of heat-stable proteins altered at the ATP-dependent regulatory phosphorylation site. , 1988, The Journal of biological chemistry.

[161]  J. Deutscher,et al.  Phosphorylation of either crh or HPr mediates binding of CcpA to the bacillus subtilis xyn cre and catabolite repression of the xyn operon. , 1999, Journal of molecular biology.