Measurement-based feedback control of linear quantum stochastic systems with quadratic-exponential criteria

This paper is concerned with a risk-sensitive optimal control problem for a feedback connection of a quantum plant with a measurement-based classical controller. The plant is a multimode open quantum harmonic oscillator driven by a multichannel quantum Wiener process, and the controller is a linear time invariant system governed by a stochastic differential equation. The control objective is to stabilize the closed-loop system and minimize the infinite-horizon asymptotic growth rate of a quadratic-exponential functional (QEF) which penalizes the plant variables and the controller output. We combine a frequency-domain representation of the QEF growth rate, obtained recently, with variational techniques and establish first-order necessary conditions of optimality for the state-space matrices of the controller.

[1]  M. R. James,et al.  Quantum Feedback Networks: Hamiltonian Formulation , 2008, 0804.3442.

[2]  Ian R. Petersen,et al.  Frequency-domain computation of quadratic-exponential cost functionals for linear quantum stochastic systems , 2019, IFAC-PapersOnLine.

[3]  Manchester Grand Hyatt Hotel H ∞ Control of Linear Quantum Systems , 2006 .

[4]  G. Folland Harmonic analysis in phase space , 1989 .

[5]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[6]  Ian R. Petersen,et al.  A Frequency Domain Condition for the Physical Realizability of Linear Quantum Systems , 2012, IEEE Transactions on Automatic Control.

[7]  Ian R. Petersen,et al.  A Girsanov Type Representation of Quadratic-Exponential Cost Functionals for Linear Quantum Stochastic Systems∗ , 2019, 2020 European Control Conference (ECC).

[8]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[9]  Naoki Yamamoto,et al.  Quantum Risk-Sensitive Estimation and Robustness , 2007, IEEE Transactions on Automatic Control.

[10]  Ian R. Petersen,et al.  Coherent quantum LQG control , 2007, Autom..

[11]  J. Rosenberg,et al.  Princeton University Press eBook Package 2014 , 2001 .

[12]  Ian R. Petersen,et al.  Lie-algebraic connections between two classes of risk-sensitive performance criteria for linear quantum stochastic systems , 2019, 2019 Proceedings of the Conference on Control and its Applications.

[13]  K. Parthasarathy,et al.  Positive Definite Kernels, Continuous Tensor Products, and Central Limit Theorems of Probability Theory , 1972 .

[14]  V. P. Belavkin,et al.  Optimal Quantum Filtering and Quantum Feedback Control , 2005 .

[15]  Matthew R. James,et al.  An Introduction to Quantum Filtering , 2006, SIAM Journal of Control and Optimization.

[16]  Ian R. Petersen,et al.  A numerical approach to optimal coherent quantum LQG controller design using gradient descent , 2016, Autom..

[17]  M. R. James A quantum Langevin formulation of risk-sensitive optimal control , 2004 .

[18]  P. Whittle Risk-sensitive linear/quadratic/gaussian control , 1981, Advances in Applied Probability.

[19]  A. Messiah Quantum Mechanics , 1961 .

[20]  Ian R. Petersen,et al.  Risk-sensitive performance criteria and robustness of quantum systems with a relative entropy description of state uncertainty , 2018, ArXiv.

[21]  Benjamin J. Keele,et al.  Cambridge University Press v. Georgia State University , 2016 .

[22]  Robin L. Hudson,et al.  Quantum Ito's formula and stochastic evolutions , 1984 .

[23]  Ian R. Petersen,et al.  A quasi-separation principle and Newton-like scheme for coherent quantum LQG control , 2010, Syst. Control. Lett..

[24]  K. R. Parthasarathy,et al.  Quantum stochastic calculus and quantum Gaussian processes , 2014, 1408.5686.

[25]  Ian R. Petersen,et al.  Multi-point Gaussian States, Quadratic–Exponential Cost Functionals, and Large Deviations Estimates for Linear Quantum Stochastic Systems , 2017, Applied Mathematics & Optimization.

[26]  Matthew R. James,et al.  Quantum feedback networks and control: A brief survey , 2012, 1201.6020.

[27]  Ian R. Petersen,et al.  A Karhunen-Loeve Expansion for One-mode Open Quantum Harmonic Oscillators Using the Eigenbasis of the Two-point Commutator Kernel , 2019, 2019 Australian & New Zealand Control Conference (ANZCC).

[28]  Matthew R. James,et al.  Quantum Dissipative Systems and Feedback Control Design by Interconnection , 2007, IEEE Transactions on Automatic Control.

[29]  2 Brownian motion and stochastic calculus , 2020 .

[30]  K. R. Parthasarathy,et al.  WHAT IS A GAUSSIAN STATE , 2010 .

[31]  D. Naidu,et al.  Optimal Control Systems , 2018 .

[32]  P. Dupuis,et al.  Minimax optimal control of stochastic uncertain systems with relative entropy constraints , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[33]  Ian R. Petersen,et al.  A Quantum Karhunen-Loeve Expansion and Quadratic-Exponential Functionals for Linear Quantum Stochastic Systems∗ , 2019, 2019 IEEE 58th Conference on Decision and Control (CDC).

[34]  A. Meyers Reading , 1999, Language Teaching.

[35]  Maira Amezcua,et al.  Quantum Optics , 2012 .

[36]  Rhodes,et al.  Optimal stochastic linear systems with exponential performance criteria and their relation to deterministic differential games , 1973 .

[37]  Ian R. Petersen,et al.  Parametric randomization, complex symplectic factorizations, and quadratic-exponential functionals for Gaussian quantum states , 2018, Infinite Dimensional Analysis, Quantum Probability and Related Topics.